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Abstract  
 
An interface may be a region in which concepts are connected, or it may be a region in which physical processes 
are connected. In both cases, conditions change abruptly. In this study, the interface between physics and chemical 
engineering is examined from the point of view of the laws of mechanics, and the details of this particular interface 
are clarified from the perspective of Euler (1703-1783) and Cauchy (1789-1857). Understanding how different 
perspectives of the laws of mechanics are connected allows us to proceed with confidence from physics to the 
traditional studies of fluid mechanics that one encounters in chemical engineering. Furthermore, it allows us to 
proceed with confidence to the study of multi-component transport phenomena. Here we encounter the concept of 
the species velocity that plays a crucial role in chemical engineering. To understand the importance of the species 
velocity, one asks the question: What happens if all species velocities are equal? The answer to this question is: 
Nothing! There is no purification, no mixing, no interfacial mass transfer, no adsorption/desorption, no 
homogeneous reaction, and no heterogeneous reaction. To illustrate how the concepts of mechanics provide a 
connection between various elements of chemical engineering, we examine the species mass jump condition as a 
focal point for mass transfer, heat transfer, thermodynamics, adsorption/desorption, and heterogeneous chemical 
reaction. 
 
Keywords: Newton, Euler, Cauchy, multicomponent systems, phase interfaces. 

 
Resumen 
 
Una interface puede ser una región en la cual se conectan conceptos, o puede ser una región en la cual se conectan 
procesos físicos. En ambos casos, las condiciones cambian abruptamente. En este estudio, la interface entre la física 
y la ingeniería química es examinada desde el punto de vista de las leyes de la mecánica, y los detalles de esta 
interface particular son aclarados desde la perspectiva de Euler (1703-1783) y Cauchy (1789-1857). El entender 
cómo diferentes perspectivas de las leyes de la mecánica están conectadas nos permite proceder con confianza 
desde la física hasta los estudios tradicionales de mecánica de fluidos que uno encuentra en ingeniería química. 
Más aún, nos permite proceder con certidumbre en el estudio de fenómenos de transporte multi-componentes. Aquí 
encontramos el concepto de velocidad de especie que juega un papel crucial en ingeniería química. Para entender la 
importancia de la velocidad de especies, se hace la pregunta: ¿Qué sucede si las velocidades de todas las especies 
son iguales? La respuesta a esta pregunta es: ¡Nada! No hay purificación, mezclado, transferencia de masa 
interfacial, ni adsorción/desorción, ni reacción homogénea, y no hay reacción heterogénea. Para ilustrar como los 
conceptos de la mecánica proporcionan una conexión entre los diferentes elementos de la ingeniería química, 
examinamos la condición de salto de especies de masa como un punto focal para la transferencia de masa, 
transferencia de calor, termodinámica, adsorción/desorción, y reacción química heterogénea. 
 
Palabras clave: Newton, Euler, Cauchy, sistemas multicomponentes, interfaces entre fases. 
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1. Physics and Chemical Engineering 
 

Most chemical engineering programs are preceded 
by a series of courses in physics, mathematics, and 
chemistry. In addition, courses in other disciplines 
such as biology, ecology, economics, etc., are often 
taken simultaneously. Knowledge of these other 
disciplines can often be crucial to chemical 
engineering students who are notorious for their 
breadth of professional activities. In each of these 
other disciplines, one encounters a certain culture 
that generally creates an abrupt change with the 
culture one finds in chemical engineering. This 
cultural change represents an interface that can be 
difficult to negotiate for a chemical engineering 
student. To illustrate this type of abrupt change 
between one discipline and another, we consider the 
discipline of physics and within that discipline we 
consider the subject of mechanics. 
 
1.1 Newton’s laws 
 
In order to develop the governing equations for the 
fluid velocity, and more importantly for the species 
velocity, we need a clear understanding of the laws 
of physics that govern that motion. Courses in 
physics present Newton’s laws and use them to 
determine the motion of mass points and rigid 
bodies. Truesdell (1968, page 88) tells us that 
Newton listed his three laws of motion as: 
Newton (1642-1727) 

I. Every body continues in its state of rest, or of 
uniform motion straight ahead, unless it be 
compelled to change that state by forces 
impressed upon it. 

II. The change of motion is proportional to the 
motive force impressed, and it takes place 
along the right line in which the force is 
impressed. 

III. To an action there is always a contrary and 
equal reaction; or, the mutual actions of two 
bodies upon each other are always directed to 
contrary parts. 

Truesdell (1968, page 167) also tells us that Newton 
never presented these ideas in the form of equations 
and because of this there are differences to be found 
in the literature. Here we choose “motion” to mean 
mass times velocity, mv, and we choose “motive 
force” to be represented by f. This leads to the first 
law given by 
Newton I: constant, 0m  v f  (1) 

while the second law takes the form 

Newton II:  d
m

dt
v f  (2) 

Here the “change of motion” has been interpreted as 
the time rate of change of the momentum, mv. Often 
a precise definition of v is not given in the discussion 
of Newton’s first and second laws, and we will 
return to this matter in subsequent paragraphs. 
Clearly Newton’s first law is a special case of 

Newton’s second law, and one can wonder why it 
was stated as an independent law. Physicists 
(Feyman et al., 1963, Vol I, page 9-1; Huggins, 
1968, page 109; Greider, 1973, page 38) have 
pointed out that Eq. (1) was deduced earlier by 
Galileo (1564-1642), thus Newton was motivated to 
elevate this result to the position of a “law”. 

Newton’s third law for two interacting bodies 
can be expressed as 
Newton III: 12 21 f f  (3) 

in which f12 is the force that body #2 exerts on body 
#1, and f21 is the force that body #1 exerts on body 
#2. The most dramatic success of these laws was 
their use, along with the law of gravitational 
attraction, to justify Kepler’s three empirical laws of 
planetary motion. In a careful statement of Newton’s 
laws, one often notes that they are valid in an inertial 
frame. This naturally leads to the question: What is 
an inertial frame? The answer is that an inertial 
frame is a frame in which Newton’s laws are valid! 
We can only escape from this circular argument by 
noting that an inertial frame must be determined by 
experiment (Hurley and Garrod, 1978, page 49). In 
Newton’s case, the verification of Kepler’s laws 
indicated that the sun and the “fixed stars” 
represented a good approximation of an inertial 
frame for the study of planetary motion. 

If we think about applying Eq. (2) to the 
motion of a body, we must wonder what is meant by 
the velocity v, since all parts of a body need not have 
the same velocity. Physicists often deal with this 
problem by arguing that Eq. (2) applies to “mass 
points” that are small enough so that their motion can 
be described by a single velocity. The statement that 
something is “small” always leads to the question: 
Small relative to what? Feynman et al. (1963, Vol I, 
page 18-1) touch on this problem by considering the 
cloud of N mass points illustrated in Fig. 1. One can 
apply Newton’s second law to the i th mass point in 
the cloud in order to obtain 

  
1

j N

i i i ij
j

d
m

dt





  v b f   (4) 

Here we have used bi to represent the force 
exerted on the i th mass point by the large, spherical 
body located outside the cloud in Fig. 1. The force 
exerted by the j th mass point in the cloud on the i th 
mass point in the cloud is represented by fij, and this 
force obeys Newton’s third law as indicated by 
 ij ji f f  (5) 

To obtain Newton’s second law for the cloud of mass 
points, we sum Eq. (4) over all the mass points in the 
cloud (Marion, 1970, page 68) 

 
1 1 1 1

j Ni N i N i N

i i i ij
i i i j

d
m

dt

  

   

   v b f  (6) 

and make use of Eq. (5) to simplify this result to the 
form 

 
1 1

i N i N

i i i
i i

d
m

dt

 

 

 v b  (7) 
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Fig. 1. Cloud of mass points interacting with a body. 
 
The mass of the cloud is given by 

 
1

i N

i
i

m m




  (8) 

while the center of mass, rCM, and the velocity of the 
center of mass, vCM, are defined by 

1 1
CM CM

1 1
,

i N i N

i i i i
i i

m m
m m

 

 

  r r v v  (9) 

The second of these definitions allows us to express 
Eq. (7) in the form 

  
1

CM

i N

i
i

d
m

dt





 v b  (10) 

We now identify the total external force acting on the 
cloud of mass points as 

 
1

i N

i
i





f b  (11) 

so that Newton’s second law for a cloud of mass 
points is given by 

Newton II:  CM
d

m
dt

v f  (12) 

Feynman et al.(1963, Vol I, page 19-2) describe this 
situation by saying “Newton’s law has the peculiar 
property that if it is right on a certain scale [the mass 
point scale], then it will be right on a larger scale 
[the cloud scale].” While this is a satisfying result, it 
does not explain “how small” a particle must be in 
order that Eq. (2) can be applied with confidence. 
For rigid bodies the velocity v at any point r is given 
by (Landau and Lifshitz, 1960) 

  CM CM
( )    v r v ω r r  (13) 

in which  represents the angular velocity. Here we 
see that a single velocity can be used to describe the 
motion of a rigid body whenever  x (r  rCM) is 
small compared to vCM, thus the constraint associated 
with the “mass point” assumption is given by 
Constraint: 

CM CM
( ) ω r r v  (14) 

For deformable bodies, one must replace Eq. (13) 
with the more general representation 

  CM

CM

T
( ) d





   
η r

η r

v r v v η  (15) 

and then examine the velocity gradient tensor in 
terms of it symmetric and skew-symmetric parts 
(Aris, 1962, page 89). In this case, the restriction 
(Whitaker, 1988) is obviously given by 

Restriction:   CM

CM

T
d





 
η r

η r

v η v  (16) 

however, the associated constraint would require a 
detailed analysis of the fluid deformation. If one 
accepts Eq. (12) as Newton’s second law instead of 
Eq. (2), no constraint need be imposed. 
 
Momentum balance 
 
While Eqs. (1) through (12) represent a reasonable 
beginning for the study of mechanics, Newton’s 
three laws are difficult to apply to the motion of a 
fluid. Because of this, chemical engineering texts 
often present a completely new statement of the laws 
of mechanics. This new statement is known as the 
macroscopic momentum balance which can be 
expressed as 

rate of     of linear
of linear momentum momentum leaving

in the control volume the control volume

      of linear   
momentum entering
the control volume

accumulation flux

flux

   
      
      
 
   
  

forces acting 
      on the
control volume

 
 
 
  

 (17) 

While this result is relatively easy to apply, it 
represents a leap of faith (Whitaker, 1999) from what 
students have learned in their study of physics. In the 
absence of an explanation, the momentum balance 
becomes a recipe to be used under conditions 
identified in a text book as opposed to a tool to be 
used as one wishes. The work of Euler (1703-1783) 
and Cauchy (1789-1857) provides a connection 
between Newton’s laws and the macroscopic 
momentum balance, and we outline this connection 
in the following paragraphs. 
 
1.2 Euler’s laws 
 
While Newton’s laws seem to be suitable for the 
study of mass points and clouds of mass points, they 
cannot be applied directly to the motion of a moving, 
deforming, continuous medium (Serrin, 1959, page 
134). Regardless of what words are used to describe 
the laws of mechanics used by chemical engineers, 
those laws are indeed the laws proposed by Euler 
(1707-1783) that can be stated as 
Euler (1707-1783) 

I. The time rate of change of the momentum of a 
body equals the force acting on the body. 

II. The time rate of change of the angular 
momentum of a body equals the torque acting 
on the body, where both the torque and the 
moment are taken with respect to the same 
fixed point. 
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Fig. 2. Moving, deforming body. 
 
In addition to these two laws, we accept the Euler cut 
principle (Truesdell, 1968, page 193) stated as: 

Not only do the laws of continuum 
physics apply to distinct bodies but 
they also apply to any arbitrary body 
that one might imagine as being cut 
out of a distinct body. 

Associated with this concept is the idea that the 
velocity at a point can be thought of as the average 
velocity of the molecules in the neighborhood of that 
point. If the length scale associated with that 
neighborhood is small compared to the characteristic 
length of the system under consideration, the 
continuum model should provide an accurate 
representation. If the characteristic length of the 
system under consideration is not small compared to 
the average distance between molecules, one must 
deal with the mechanics of molecular motion 
(Tolman, 1938). 

In order to understand how Euler’s laws are 
related to Newton’s laws, we need to put Euler’s 
laws in precise mathematical form. This will allow 
us to demonstrate that they contain Newton’s laws 
provided that we restrict ourselves to non-relativistic 
phenomena. Since Euler’s two laws and the Euler cut 
principle form the basis for virtually all of 
engineering mechanics, it is important that we 
understand these concepts. 

We begin our study of Euler’s laws by 
expressing them in terms of the following two 
equations 

   time rate of change
force acting on

of the linear momentum
   the 

        of a 
body

body

 
      

   

 (18) 

    time rate of change
torgue acting on

       of the angular 
   the 

momentum of a 
body

body

 
      

   

 (19) 

to which we add the non-relativistic concept that the 
mass of a body is a constant. 

 
 time rate of change

0
of the mass of a body
   
 

 (20) 

In Fig. 2 we have illustrated an arbitrary body that 
one can image as being cut out of a distinct body. 
The volume of this moving, deforming body is 
designated as ( )m tV , and the differential volume and 

surface elements are identified as dV and dA 
respectively. The vector force per unit surface area 
is designated by the stress vector, t(n) which 
represents a contact force that the surroundings exert 
on the body. The vector force per unit mass is 
designated by b and it represents a force acting at a 
distance that is exerted on the body. For many 
processes, the force per unit mass is equal to the 
gravitational acceleration, i.e., b = g; however, this 
simplification is only valid when the electrodynamic 
and electromagnetic forces are negligible. 

We begin our analysis of Eq. (18) by 
constructing a mathematical representation of the 
momentum of the body. The mass, dm, contained in 
the differential volume element shown in Fig. 2 is 
given by 
 dm dV   (21) 

and the momentum (mass times velocity) per unit 
volume takes the form 
 dm dV v v  (22) 

The total momentum of the body is the volume 
integral of this quantity, and we express this as 

 
( )

momentum
of the body

m t

dV
    
   v

V

 (23) 

which allows us to express the first term in Eq. (18) 
in the form 

 
( )

   time rate of change
of the linear momentum
        of a m t

d
dV

dt body

 
    
  

 v
V

 (24) 

To complete our mathematical representation of Eq. 
(18), we need to express the force acting on the body 
in terms of the body force and the surface force. The 
first of these is given by 

 
( )

body force acting
   on the body

m t

dV
    
   b

V

 (25) 

while the second takes the form 

 ( )

( )

surface force acting
    on the body

m t

dA
   
   nt

A

 (26) 

Use of Eqs. (24), (25) and (26) in the word equation 
given by Eq. (18) leads to a precise mathematical 
statement of Euler’s first law. 

( )

( ) ( ) ( )

Euler I :
m m mt t t

d
dV dV dA

dt
      nv b t

V V A

 (27) 

Following this same type of analysis, one can show 
that the word equation given by Eq. (19) takes the 
form1 

                                                 
1 Here all torques are the moments of forces, thus body torques 

have been ignored (Serrin, 1959, Dahler and Scriven, 1961; Aris, 
1962). 
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( )

( ) ( ) ( )

Euler II :
m m mt t t

d
dV dV dA

dt
       nr v r b r t

V V A

 

 (28) 
To be precise about Euler’s two laws, we need to say 
that the velocity, v, is determined relative to an 
inertial frame and that the position vector r is 
determined relative to some fixed point in an inertial 
frame. As mentioned earlier in connection with 
Newton’s laws, one identifies an inertial frame by 
experiment. In addition to the precise statement of 
Euler’s two laws of mechanics, we need a similar 
statement for the principle of conservation of mass. 
Integration of Eq. (21) over the volume occupied by 
a body yields the mass of the body, and this result 
can be used with Eq. (20) to obtain 

Mass: 
( )

0
m t

d
dV

dt
 

V

 (29) 

It is important to remember that these three 
axiomatic statements for linear momentum, angular 
momentum and mass apply to any arbitrary body that 
one imagines as being cut out of a distinct body. 
 
1.3 Euler’s laws and Newton’s laws 
 
Given Euler’s two laws of mechanics and the Euler 
cut principle, we need to know how they are related 
to Newton’s three laws. To explore this problem, we 
consider a body of mass m illustrated in Fig. 3, and 
we locate the center of mass of that body in terms of 
the position vector defined by 

 
( )

CM
1

m t

dV
m

 r r
V

 (30) 

This definition of the center of mass for a body is 
analogous to the definition for a cloud of mass points 
given earlier by the first of Eqs. (9). For a sphere of 
uniform density, the center of mass would be located 
at the geometrical center of the sphere; however, the 
definition of rCM is completely general and Eq. (30) 
is applicable to any arbitrary body that is cut out of a 
distinct body. The velocity of the center of mass is 
defined in a similar manner 

 CM

( )

1

m t

dV
m

 v v
V

 (31) 

and one can use a special form of the Reynolds 
transport theorem (Whitaker, 1981, page 94) to prove 
that 

 CM
CM

d

dt


r
v  (32) 

The definition given by Eq. (31) can be used to 
express the first term in Eq. (27) as 

  CM

( )m t

d d
dV m

dt dt
  v v

V

 (33) 

As a matter of convenience, we designate the total 
force acting on the body by 

 ( )

( ) ( )m mt t

dV dA    nf b t
V A

 (34) 

 
 

Fig. 3. Motion of a body. 
 
so that Eq. (27) can be represented in the simplified 
form given by 

Euler Result I:  CM

d
m

dt
v f  (35) 

This is identical in form to Newton’s second law for 
the cloud of mass points illustrated in Fig. 1, and if 
the body is “small enough” so that vCM can be 
replaced by v we see that Eq. (35) is identical in 
form to Eq. (2) for a mass point. In addition, one can 
certainly imagine that the force in Eq. (2) includes 
both a body force and a surface force and this would 
be consistent with the representation given by Eq. 
(34). However, if one accepts this point of view, one 
must be careful to indicate that Newton’s third law 
given by Eq. (3) only applies to body forces. The 
similarity in form (not content) of Euler’s first law 
and Newton’s second law has encouraged many to 
think that Newton’s laws and Euler’s first law are 
essentially equivalent. This is a line of thought that 
should be discouraged since Newton’s laws cannot 
be applied directly to the motion of a moving, 
deforming, continuous medium (Serrin, 1959, page 
134). Thus fluid motion and the deformation of 
solids are processes that are beyond the reach of 
Newton’s laws as given by Eqs. (1) through (3). 
 
Body forces 
 
In order to clarify the different perspectives of 
physicists and chemical engineers, we apply Euler’s 
first and second laws to the special case of three 
interacting bodies in a vacuum2. This situation is 
illustrated in Fig. 4 where we have shown two 
distinct small bodies, three Eulerian cuts and a 
distinct large body. For Cut I and Cut II, Euler’s first 
law yields 
  

                                                 
2. In this section we have omitted surface forces in order to 

simplify the analysis. In Appendix A we show that the inclusion of 
surface forces does not alter the result obtained here. 



S. Whitaker / Revista Mexicana de Ingeniería Química Vol. 8, No. 1 (2009) 1-33 

www.amidiq.org 7

 
Fig. 4. Three-body process. 

 

I I I

1 1 1 12 1 13

( ) ( ) ( )

Cut I :
t t t

d
dV dV dV

dt
      v b b

V V V

 

 (36) 

II II II

2 2 2 21 2 23

( ) ( ) ( )

Cut II :
t t t

d
dV dV dV

dt
      v b b

V V V

 (37) 
The application of Cut III treats the two small bodies 
as a single body for which the time rate of change of 
momentum is balanced by the applied external force. 
This leads to 

I II

I II

1 1 2 2

( ) ( )

1 13 2 23

( ) ( )

Cut III :
t t

t t

d
dV dV

dt

dV dV

 
   
  

   

 

 

v v

b b

V V

V V

 (38) 

Substitution of Eqs. (36) and (37) into Eq. (38) 
provides 
 

I II

1 12 2 21

( ) ( )

0
t t

dV dV    b b
V V

 (39) 

and it will be convenient to identify these two body 
forces as 

 

I II

12 1 12 21 2 21

( ) ( )

,
t t

dV dV    f b f b
V V

 (40) 

At this point we repeat Eq. (35) as 

Euler Result I:  CM

d
m

dt
v f  (41) 

and note that Eqs. (39) and (40) lead to 
Euler Result II: 12 21 f f  (42) 

Equation (41) provides Newton’s second law for the 
cloud of mass points illustrated in Fig. 3, and when 
applied to a mass point it yields Newton’s second 
law as given by Eq. (2). Equation (42), which was 
derived by applying Euler’s first law to the process 
illustrated in Fig. 4, is identical to Newton’s third 
law. Here we see that Euler’s first law can be used to 
obtain all three of Newton’s laws; however, the 
inverse is not true, i.e., one cannot use Newton’s 
laws for mass points or for a cloud of mass points in 
order to obtain Euler’s first law. Euler’s laws are 
based on the Euler cut principle and the assumption 
that the material under consideration can be treated 
as a continuum. These constructs are not to be found 

in Newton’s treatment of mechanics (Truesdell, 
1968)3. 

Given that Euler’s first law contains all that is 
available in Newton’s three laws, one must wonder 
why physicists do not move forward one century and 
accept Euler’s first law as their axiom for mechanics. 
The answer would appear to be associated with 
Euler’s second law that we examine in the following 
paragraphs. 
 
Central forces 
 
In the absence of any surface forces, we can express 
Euler’s second law as 

 
( ) ( )m mt t

d
dV dV

dt
   r v r b

V V

 (43) 

and for the three Eulerian cuts illustrated in Fig. 4 we 
have 

I I

I

1 1 1 1 1 12

( ) ( )

1 1 13

( )

Cut I :
t t

t

d
dV dV

dt

dV

  

 

 



r v r b

r b

V V

V

 (44) 

II II

II

2 2 2 2 2 21

( ) ( )

2 2 23

( )

Cut II :
t t

t

d
dV dV

dt

dV

  

 

 



r v r b

r b

V V

V

 (45) 

I II

I II

1 1 1 2 2 2

( ) ( )

1 1 13 2 2 23

( ) ( )

Cut III:
t t

t t

d
dV dV

dt

dV dV

 
   
  

   

 

 

r v r v

r b r b

V V

V V

 (46) 

Use of Eqs. (44) and (45) in Eq. (46) leads to a 
constraint on the body forces given by 

 

I II

1 1 12 2 2 21

( ) ( )

0
t t

dV dV    r b r b
V V

 (47) 

                                                 
3. See “A Program toward the Rediscovering the Rational 

Mechanics of the Age of Reason”, Chapter 2 in Essays of the 
History of Mechanics, C. Truesdell, Springer-Verlag New York 
Inc., 1968 
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The position vectors can be expressed in terms of the 
position vectors locating the centers of mass 
according to 
    1 CM 1 2 CM 21 2

,   r r r r r r   (48) 

and this leads to 

 

 

 
I I

II II

CM 1 12 1 1 121
( ) ( )

CM 2 21 2 2 212
( ) ( )

0

t t

t t

dV dV

dV dV

   

     

 

 

r b r b

r b r b




V V

V V

(49) 

Next we make use of Eqs. (39) and (40) to express 
this result in the form 

I II

1 2 12

1 1 12 2 2 21

( ) ( )

CM CM( ) ( )

0
t t

dV dV

   
 
     
  
 

r r f

r b r b 
V V

 (50) 

In Appendix B we demonstrate that the last term in 
this result can be neglected when the following 
constraint is satisfied: 

Constraint: 
   

1 2

CM CM1 2

( ) ( )
1


  

O r O r

O r r

 
  (51) 

Under these circumstances, Euler’s second law leads 
to 

    CM CM 121 2
0    r r f  (52) 

There are three ways in which this result can be 
satisfied, and we list them as 
1.    CM CM1 2

0 r r (53) 

2. 12 0f   (54) 

3.    CM CM 121 2
 and  are parallelr r f  (55) 

Since the first two possibilities can not be generally 
true, we conclude that the interaction force between 
two bodies must be parallel to the vector 

   CM CM1 2
r r . We express this result as 

Euler Result III:    12 12 CM CM1 2
    f r r  (56) 

in which 12 is some scalar parameter of the 
interaction force law. Equation (56) indicates that the 
interaction force between two bodies subject to the 
constraint given by Eq. (51) must act along the line 
of centers, i.e., it is a central force. 

In this analysis we have shown that Euler’s 
first law contains Newton’s three laws, while Euler’s 
second law provides what is known as the central 
force law for the case of mass-point mechanics. 
Given the power and economy of Euler’s laws, one 
can wonder why Newton’s three laws are not 
discarded in favor of Euler’s two laws. The answer 
lies in the fact that the central force law, represented 
by Eq. (56), is a non-relativistic phenomenon. Since 
forces are propagated at the speed of light, the force 
that one body exerts on another cannot lie along the 
line of centers when the relative velocity between the 
two bodies approaches the speed of light. Because of 
this, physicists prefer to view mechanical phenomena 
in terms of Newton’s laws and make use of the 

central force law as a special case which can be 
discarded when relativistic phenomena are 
encountered. Engineers, on the other hand, are rarely 
involved in relativistic phenomena and what is a 
special case for the physicist is the general case for 
the engineer. Because of this, engineers uniformly 
formulate their mechanical problems in terms of 
Euler’s two laws and the Euler cut principle. 
 
1.4 Euler’s laws and Cauchy’s equations 
 
At this point we have traveled part of the route that 
takes us across the interface between Newton’s laws 
of motion and the macroscopic momentum balance. 
To complete our journey and connect physics and 
chemical engineering (in the mechanical sense) we 
need to show how Euler’s laws can be used to derive 
the macroscopic momentum balance given by Eq. 
(17). 

In order to derive the macroscopic momentum 
balance on the basis of Euler’s laws, we must first 
deal with the stress vector that appears in Eqs. (27) 
and (28). This leads us to the work of Cauchy (1789-
1857). Cauchy’s lemma indicates that the stress 
vector acting on one side of a surface is equal and 
opposite to the stress vector on the other side of the 
surface leading to (see Appendix C) 
Cauchy’s lemma: ( ) ( ) n nt t  (57) 

This represents the first step in the development of 
Cauchy’s fundamental theorem given by (see 
Appendix D) 
Cauchy’s fundamental theorem: 
 ( )  nt n T  (58) 

in which the stress tensor, T, is defined by 

      ( ) ( ) ( )  i j ki t j t k tT  (59) 

Here we encounter dyadic multiplication of vectors 
which is different from the more well known “dot” 
product or “cross” product between two vectors. 
When this result is used in Eq. (27) we obtain 

Euler I:
( ) ( ) ( )m m mt t t

d
dV dV dA

dt
      v b n T

V V A

(60)

 and application of the appropriate form of the 
divergence theorem leads to 

Euler I:
( ) ( ) ( )m m mt t t

d
dV dV dV

dt
      v b T

V V V

(61) 

In order to extract a governing differential equation 
from this result, we need to make use of the 
Reynolds transport theorem to express the left hand 
side of Eq. (61) as 

 
( ) ( ) ( )m m mt t t

d
dV dV dA

dt t


     

  v v vv n
V V A

 (62) 

While Osborne Reynolds (1842-1912) is often 
credited with the development of this theorem for 
interchanging differentiation and integration, 
Truesdell (1954, page 53) suggests that “the 
transport theorem is really an alternative formulation  
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Fig. 5. Arbitrary, moving control volume 
 
of Euler’s expansion formula.” From a different 
perspective, one can argue that Eq. (62) is nothing 
more than a three-dimensional version of the Leibniz 
(1646-1716) rule for differentiating an integral. 

The use of Eq. (62) with Eq. (61) leads to the 
following form of Euler’s first law 

 

 

 
( ) ( )

( )

m m

m

t t

t

dV dA
t

dV


   



  

 



v vv n

b T

V A

V

 (63) 

and the use of the divergence theorem with the 
second term provides 

   
( )

0
m t

dV
t

            v vv b T
V

 (64) 

If we assume that the integrand is continuous and 
note that the limits of integration are arbitrary, we 
conclude that the integrand is zero. This leads to 
what is sometimes referred to as Cauchy’s first 
equation (Truesdell, 1968, page 186). 

Cauchy I:    
t


         


v vv b T  (65) 

Cauchy’s second equation is based on Euler’s second 
law given by Eq. (28) and Cauchy’s fundamental 
theorem given by Eq. (58). The development is 
complex; however, the final result is quite simple 
and is given by 
Cauchy II: TT T  (66) 
in which TT represents the transpose of T. In terms 
of the components of the stress tensor, Eq. (66) takes 
the form 
 , 1, 2,3,ij ji i jT T   (67) 

In addition to Cauchy’s two equations that one can 
derive from Euler’s two laws of mechanics, we need 
to add the continuity equation that can be derived 
from Eq. (29). Use of the Reynolds transport 
theorem with Eq. (29) provides 
Mass: 

( ) ( ) ( )

0
m m mt t t

d
dV dV dA

dt t


     

   v n
V V A

 (68) 

Application of the divergence theorem leads to 

  
( )

0
m t

dV
t

       v
V

 (69) 

and from this we extract the well known continuity 
equation given by 
Continuity equation: 

   0
t


    


v  (70) 

Often the continuity equation is used to modify the 
left hand side of Eq. (65) to obtain 

 
t


       


T
v

v v b  (71) 

and the material derivative can be used to produce 
the more compact form given by 

 
D

Dt
     T

v
b  (72) 

When applying this result to fluids, one often follows 
the work of Stokes (1819-1903) in which the stress 
tensor is decomposed according to (Aris, 1962, page 
106) 
 p  T I τ  (73) 

This leads to the viscous stress equations of motion 

 
D

p
Dt

       
v

b τ  (74) 

For linear, isotropic fluids the viscous stress tensor 
takes the form 

    T 2
3       v v vτ  (75) 

in which  is the shear coefficient of viscosity and  
is the bulk coefficient of viscosity. When 
compressible viscous effects can be ignored, and the 
shear coefficient of viscosity can be treated as a 
constant, substitution of Eq. (75) into Eq. (74) leads 
to the well known Navier-Stokes equations. 

 2D
p

Dt
      

v
b v  (76) 

Given Eqs. (65), (66) and (70) we are ready to 
complete the transition from Newton’s laws to the 
macroscopic momentum balance indicated by Eq. 
(17). 
 
1.5 Macroscopic momentum balance 
 
In order to develop a completely general 
macroscopic form of Eq. (65), we make use of an 
arbitrary moving control volume designated by 

( )a tV  in which the “a” stands for arbitrary. In Fig. 5 

we have illustrated an arbitrary moving control 
volume for which the speed of displacement of the 
control surface is w n . The general form of the 
macroscopic momentum balance is derived by 
integrating Eq. (65) over ( )a tV  to obtain 

 

   
( )

( ) ( )

a

a a

t

t t

dV
t

dV dV

       

    



 

v vv

b T

V

V V

 (77) 
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Fig. 6. Control volume for the analysis of the plane 
jet. 
 
While this result indeed represents the macroscopic 
momentum balance, only the body force term is 
susceptible to macroscopic interpretation. In order to 
transform the other terms so that they are also 
susceptible to macroscopic interpretation, we first 
use the divergence theorem to transform the volume 

integrals of   vv  and T  to area integrals 

leading to 

 

 
( ) ( )

( )

( ) ( )

a a

a a

t t

t t

dV dA
t

dV dA


   



  

 

  n

v vv n

b t

V A

V A

 (78) 

Here one can see that the first term is certainly not 
susceptible to macroscopic interpretation; however, 
use of the general transport theorem (Whitaker, 
1981, page 88) provides 

 
( ) ( ) ( )a a at t t

d
dV dV dA

dt t


     

  v v vw n
V V A

 (79) 

When this is used with Eq. (78) we obtain the 
macroscopic momentum balance in the form 

 

( ) ( )

time rate of change    net flux of momentum
of momentum in the leaving the control volume
control volume

( )

    body force acting on the
material in th

( )
a a

a

t t

t

d
dV dA

dt

dV

    

 

 



v v v w n

b

 V A

V
( )

( )

  surface force acting on the
e control volume material in the control volume

a t

dA  nt

 A

 (80) 

This is a precise representation of the result 
suggested earlier by Eq. (17), and it is only useful for 
solving macroscopic problems when the terms are 
susceptible to macroscopic interpretation. One 
classic example of a process that can be analyzed 
successfully using Eq. (80) is illustrated in Fig. 6. In 
this case, the x-component of the force exerted on the 
plate can be obtained from Eq. (80) on the basis of a 
few judicious assumptions. However, it is difficult to 
create confidence in students by imposing 
assumptions about kinematics and stress (Euler & 
Cauchy) when the students have little or no 
knowledge of these concepts. In many cases, 
macroscopic balance analysis of flow problems 

requires the use of the macroscopic mechanical 
energy equation. This can only be derived starting 
from Eq. (65), and one is again faced with the 
necessity of following the path identified by Euler 
and Cauchy. 
 
1.6 Summary 
 
In the previous paragraphs we have outlined a 
connection between Newton’s laws and Euler’s laws 
as they apply to both mass points and continuous 
media. Students who travel this path can appreciate 
the similarities between these two points of view and 
they can appreciate the differences. They can derive 
the macroscopic momentum balance and, with 
practice, they can apply it with confidence. In 
addition, they can derive and apply tools such as 
Bernoulli’s equation and the mechanical energy 
equation (Whitaker, 1981, page 221). A quick survey 
of Eqs. (18) through (80) indicates that a rigorous 
derivation of the macroscopic momentum balance is 
not an easy task, and one can certainly question 
whether the rigorous approach is worth the effort. 
The answer is YES for two reasons. First, if Eq. (80) 
is presented as a recipe for solving problems, 
students will only use it with confidence to solve 
problems that have already been solved. Second, 
chemical engineering students must deal with multi-
component systems in which one is confronted with 
the species velocity and the species body (Truesdell, 
1969, Lecture 5). Working with these quantities is 
difficult if one does not have some experience with 
the developments of Euler and Cauchy. 
 
2. Multicomponent systems 
 
In this section we provide a brief outline of the 
axioms for the mass and momentum of 
multicomponent systems, and we present several 
important forms of the proved theorems associated 
with these axioms. A key concept associated with the 
continuum approach to multicomponent transport 
phenomena is the species body. In Fig. 7 we have 
illustrated a two-component system containing 
species A and species B from which we have cut out 
a species A body. At t = 0 the space occupied by the 
species A body is also occupied by a species B body 
having the same configuration. However, as time 
evolves the two species separate since their velocities 
are not equal. 

For single component transport phenomena, 
one considers a continuum whose motion is 
described by 

  ,tr r R  (81) 

in which r represents the time-dependent position of 
a material element whose reference position is R. 
The velocity of any material element can be 
expressed as 
 

 

x

z

1

2

control

volume

3
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Fig. 7. Motion of a species A body. 
 

 
d D

dt Dt

 
  
 R

r r
v  (82) 

in which D Dtr  is the material derivative that 

appears in Eq. (72). The motion of a species body is 
described in an analogous manner, thus the motion of 
a material element of species A is represented as 
 ( , )A A A tr r R  (83) 

and the velocity is given by 

 
A

A
A

d

dt

 
  
 R

r
v  (84) 

Points within the species A body illustrated in Fig. 7 
move with the velocity, vA. 
 
2.1 Conservation of mass 
 
In terms of the concept of a species body, we state 
the two axioms for the mass of multicomponent 
systems as 
Axiom I: 

( ) ( )

, 1, 2, ....,
A A

A A

t t

d
dV r dV A N

dt
   

V V

 (85) 

Axiom II: 
1

0
A N

A
A

r




  (86) 

Here A represents the mass density of species A 
while rA represents the net mass rate of production 
(per unit volume) of species A owing to chemical 
reaction. In order to extract a governing differential 
equation from Eq. (85), we make use of the Reynolds 
transport theorem for the volume ( )A tV  to obtain 

( ) ( ) ( )A A A

A
A A A

t t t

d
dV dV dA

dt t


    

   v n
V V A

 (87) 

and then apply the divergence theorem so that Eq. 
(85) can be expressed as 

( )

( ) 0 ,

1, 2, ...,
A

A
A A A

t

r dV
t

A N

 
      



 v
V

 

(88) 

Here we note that the volume ( )A tV  is arbitrary in 

the sense that the Euler cut principle suggests that 
we can identify any region in space as the species 
body. If we assume that the integrand in Eq. (88) is 
continuous, the arbitrary nature of ( )A tV  leads us to 

conclude that the integrand must be zero. Requiring 
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that Eq. (88) be satisfied leads to the species 
continuity equation and we repeat the constraint on 
the reaction rates so that our point equations are 
given by (Truesdell and Toupin, 1960, Sec. 159) 

 ( ) , 1, 2, ......,A
A A Ar A N

t


     


v  (89)

 
1

0
A N

A
A

r




  (90) 

It is important to demonstrate how Eqs. (89) and (90) 
are related to earlier studies of single component 
transport phenomena and the continuity equation. If 
we sum Eq. (89) over all species and impose the 
axiom given by Eq. (90) we obtain 

 
1 1

0
A N A N

A A A
A At

 

 


    

   v  (91) 

We define the total mass density as 

 
1

A N

A
A





    (92) 

and note that the mass fraction is given by 
 A A     (93) 

In terms of the total mass density Eq. (91) takes the 
form 

 
1

0
A N

A A
At






  

  v  (94) 

and use of the definition of the mass average velocity 

 
1

,
A N

A A
A

mass average velocity




 v v  (95) 

leads us to 

 ( ) 0
t


  


v  (96) 

This result has exactly the same form as the 
continuity equation for single component systems; 
however, one should think of it as having greater 
physical content since the density and velocity are 
related to the associated species quantities by Eqs. 
(92) and (95). 
 
2.2 Molar forms 
 
Often the molar form of Eq. (89) is preferred because 
both reaction rates and phase equilibria are expressed 
in molar quantities. We can divide Eq. (89) by the 
molecular mass of species A and make use of the 
definitions 
 ,A A A A A Ac M R r M    (97) 

in order to express Eqs. (89) and (90) as 

 
( ) , 1, 2, ....,A

A A A

c
c R A N

t


   


v  (98) 

 
1

0
A N

A A
A

M R




  (99) 

While Eq. (90) will be of some use to us in our 
analysis of both the mass and mechanics of 
multicomponent systems, Eq. (99) will be of very 
little use. In actual fact, the axiomatic form given by 

Eq. (86) is less predominate among chemical 
engineers and chemists than the following statement 

 

   atomic species are

 neither created nor

destroyed by chemical

         reactions

 
 
 
 
 
  

 (100) 

and we need to represent this concept in precise 
mathematical form. 
 
2.3 Stoichiometry 
 
To be precise about the role of atomic species in 
chemical reactions, we need to replace the word 
statement given by Eq. (100) with a word equation 
which we write as 

0 , 1, 2, ....,

total molar rate of  production

 of  J - type atoms owing to J T

       chemical reactions

 
    
 
 
 (101) 
From this we need to extract a mathematical 
equation and in order to do this we define the 
number NJA as (Amundson, 1966, page 51) 

 

  
1, 2, ...,

,
1, 2, ...,JA

number of  J - type
J T

N atoms associated with
A N

 molecular species A

 
     

 
 (102) 
We will refer to NJA as the chemical composition 
indicator, and we can use this definition to express 
the axiom represented by Eq. (101) as 

Axiom II: 
1

0, 1, 2, ....,JA

A N

A
A

N R J T




   (103) 

This represents a precise mathematical statement that 
atomic species are neither created nor destroyed by 
chemical reactions, and one can use this result to 
prove Eq. (86) as a theorem. While the concept 
expressed by Eq. (100) appears to be quite simple, 
the application of Eq. (103) requires some thought 
and the details of the application are given by Cerro 
et al., (2009). 
 
2.4 Laws of mechanics 
 
It should be clear that Eqs. (98) and (103) are 
essential elements of chemical engineering, since 
they have direct application to the design of 
separation processes and chemical reactors. Use of 
Eq. (98) requires a knowledge of the species velocity 
which, in turn, requires an understanding of the 
mechanics of the species body illustrated in Fig. 7. 
Our approach to the laws of mechanics for 
multicomponent systems follows the original work 
of Euler and Cauchy and is based on the perspective 
of Truesdell (1969, Lecture 5). We begin with the 
species A body illustrated in Fig. 7 and express the 
balance of species A momentum as 
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( )

( ) ( ) ( )

1( ) ( )

Axiom I :

, 1 2

A A A

A A

A A A A A

t t t

B N

AB A A
Bt t

d
dV dV dA

dt

dV r dV A , , ..., N




   

  

  

 

nv b t

P v

V V A

V V

(104) 
The left hand side of this expression represents the 
time rate of change of linear momentum of the 
species A body and this is analogous to the left hand 
side of Eq. (27). The first term on the right hand side 
represents the body force acting on the species A 
body. In many cases, the only body force is the 
gravitational force and bA can be replaced by g. The 
second term on the right hand side represents the 
surface force acting on the surface of the species A 
body. The body force and the surface force are the 
only forces that appear in Euler’s first law, and it is 
consistent with the work of Euler to refer to tA(n) as 
the species A stress vector. Because other species 
may occupy the space identified as ( )A tV , we need 

to consider the forces that these other species exert 
on species A. We use PAB to represent the force per 
unit volume that species B exerts on species A, and 
this gives rise to the third term on the right hand side 
of Eq. (104). We will refer to PAB as a diffusive force 
since it should depend on the relative velocity 
between species A and species B. This relative 
velocity is illustrated by the motion depicted in Fig. 
7 where species A and species B obviously have 
different velocities. 

Finally we need to consider the fact that the 
momentum of the species A body may be increased 
or decreased by the change in the mass of species A 
owing to chemical reactions. We represent the 
source () of species A momentum per unit volume 
as rAvA and this leads to the last term on the right 
hand side of Eq. (104). If species A is consumed by a 
chemical reaction, it seems reasonable that the loss 
of momentum per unit volume would be given by 
rAvA; however, if species A is produced by the 
decomposition of species B, the gain in momentum 
per unit volume should be represented by rAvB. A 
precise description of the source of species A 
momentum depends on the details of the chemical 
reaction process; however, the difference between vA 
and vB is on the order of the diffusion velocity, and in 
subsequent paragraphs we will show that this 
difference is, in general, unimportant in terms of the 
contribution of rAvA to the species momentum 
equation. 

At this point one can repeat the development 
of Cauchy’s lemma and Cauchy’s fundamental 
theorem using Eq. (104) in order to express the 
species A stress vector as 
 ( )A A nt n T  (105) 

Use of this result in Eq. (104) and applying the 
divergence theorem leads to 

( ) ( ) ( )

1( ) ( )

A A A

A A

A A A A A

t t t

B N

AB A A
Bt t

d
dV dV dV

dt

dV r dV




    

 

  

 

v b

P v

T
V V V

V V

 (106) 
With an appropriate interpretation of the 
nomenclature, one finds that this result is identical to 
the second of Eqs. 5.10 of Truesdell (1969, page 85) 
provided that one interprets Truesdell’s growth of 
linear momentum as the last two terms in Eq. (106). 
Truesdell and Toupin (1960, page 567) refer to TA as 
the partial stress while Truesdell (1969, page 82) 
favors the word peculiar. 

A variation of the Reynolds transport theorem 
illustrated by Eq. (87) can be applied to express the 
first term in Eq. (106) as 

 
( ) ( ) ( )A A A

A A A A A A A

t t t

d
dV dV dA

dt t


     

  v v v v n
V V A

 (107) 
Use of this result, along with the divergence 
theorem, allows us to collect all the terms in Eq. 
(106) under a single integral over ( )A tV , and from 

that integral equation we can extract the following 
point equation for the momentum of species A: 

     
body force surfaceconvective

forceaccelerationlocal acceleration

A A A A A A A At


         


v v v b

T


1 source of momentum

    owing to reactiondiffusive 
   force

, 1, 2, , 
B N

AB A A
B

r A  ... N




   P v


 (108)

 

An appropriate interpretation of the nomenclature 
used here will indicate that this result is identical to 
Eq. A2 of Curtiss and Bird (1996) for the case in 
which 0Ar   provided that one takes into account 

the different sign convention for the stress. 
The second axiom for the species body 

illustrated in Fig. 7 is the angular momentum 
equation given by 

( ) ( )

( )
1( ) ( )

( )

Axiom II :

, 1, 2, ...,

A A

A A

A

A A A A

t t

B N

A AB
Bt t

A A

t

d
dV dV

dt

dA dV

r dV A  N





  

   

  

 

 



n

r v r b

r t r P

r v

V V

A V

V

(109) 

This result is based on the idea that all torques are 
the moments of forces and all angular momentum 
results from the moment of linear momentum, a 
concept in keeping with the perspective of Euler as 
indicated by Eqs. (27) and (28). Truesdell (1969, 
page 84) presents a more general version of Axiom II 
in which a growth of rotational momentum is 
included. The analysis of Eq. (109) is rather long; 
however, the final result is simply the symmetry of 
the partial stress tensor as indicated by 
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 T
, 1, 2, ..., A A A N T T  (110) 

In addition to Axioms I and II, we also impose the 
following constraint on the diffusive force, PAB, that 
appears in Eq. (104): 

Axiom III: 
1 1

0
A N B N

AB
A B

 

 

  P  (111) 

This constraint is required in order that Cauchy’s 
first equation (see Eq. 65) be valid for mixtures. A 
little thought will indicate that Axiom III is easily 
satisfied by the condition PAB = PBA which is 
reminiscent of Newton’s third law of action and 
reaction for mass points. However, a law for mass 
points does not necessarily carry over to a law for 
continua, thus Eq. (111) represents an appropriate 
constraint on the diffusive forces. 

Hirschfelder et al. (1954, page 497) point out 
that “even in a collision which produces a chemical 
reaction, mass, momentum and energy are 
conserved” and the continuum version of this idea is 
given by: 

Axiom IV: 
1

0
A N

A A
A

r




 v  (112) 

Once again we should note that rAvA may not be a 
precise representation of the momentum source () 
during a chemical reaction; however, the error will 
only be on the order of rA times the diffusion 
velocity. 
 
2.5 Total momentum equation 
 
In order to compare the results given by Eqs. (108) 
and (110) with Cauchy’s equations, we first sum Eq. 
(108) over all N species in order to develop the total 
momentum equation. This is given by 

   
1 1

1 1

A N A N

A A A A A
A A

A N A N

A A A
A A

t

 

 

 

 


  



  

 

 

v v v

b T

 (113) 

in which Axioms III and IV have been used to 
eliminate the sum of the last two terms in Eq. (108). 
At this point we define the following total or mass 
average quantities according to 

 
1

,
A N

A
A

total density




  
 

 (114) 

 ,A A mass fraction     (115) 

 
1

,
A N

A A
A

mass average velocity




 v v  (116) 

 
1

,
A N

A A
A

mass average body force




 b b  (117) 

so that Eq. (113) takes the form 

 
1 1

A N A N

A A A A
A At

 

 


       

  v v v b T  (118) 

In order to extract a simplified form of the 
convective acceleration, we need to introduce the 
important concept of a diffusion velocity. In the 

chemical engineering literature, one finds references 
to a molar diffusion velocity and a mass diffusion 
velocity; however, it is only the latter that plays a 
role in the mechanics of multicomponent systems. 
We define the mass diffusion velocity according to 
the decomposition given by 
 , 1, 2, ..., A A A N  v v u  (119) 

and one can easily show that the mass diffusion 
velocities are constrained by 

 
1

0
A N

A A
A





  u  (120) 

The representation given by Eq. (119) can be used to 
express the convective inertial term in Eq. (118) as 

 
1 1

( )
A N A N

A A A A A A
A A

 

 

    v v v v u  (121) 

and a little thought will indicate that this result takes 
the form 

 
1 1

A N A N

A A A A A A
A A

 

 

     v v vv v u  (122) 

With the aid of Eq. (119) one can express the last 
term in this representation as 

 
1 1 1

A N A N A N

A A A A A A A A
A A A

  

  

      v u vu u u  (123) 

and the constraint on the mass diffusion velocities 
given by Eq. (120) leads to the simplification 

 
1 1

A N A N

A A A A A A
A A

 

 

   v u u u  (124) 

Use of this result in Eq. (122) leads to 

 
1 1

A N A N

A A A A A A
A A

 

 

     v v vv u u  (125) 

and this allows us to write Eq. (118) as 

 
1

( )
A N

A A A
A

A

t










      



   




A N

A 1

v vv u u

b T

 (126) 

At this point it is convenient to define a total stress 
tensor for multicomponent systems as 

 
1

A N

A A A A
A





  u uT T  (127) 

in which the terms represented by AuAuA are 
referred to as the diffusive stresses. Use of this result 
in Eq. (126) leads us back to Cauchy’s first equation 
given by 

Cauchy I:    
t


       


Tv vv b  (128) 

It is easy to see that one can use Eq. (110) along with 
Eq. (127) to produce the symmetry condition given 
earlier as Cauchy’s second equation. 
Cauchy II: TT T  (129) 
The result given by Eq. (127) is identical to Eqs. A6 
and A7 of Curtiss and Bird (1996); and Eq. 215.1 of 
Truesdell and Toupin (1960); however, different 
choices have been made concerning the words used 
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to describe TA and different choices have been made 
concerning the sign convention for the stress. 
 
2.6 Stefan-Maxwell’s equations 
 
The importance of Eq. (108) is based on the fact that 
we must determine the species velocity vA in order to 
solve Eq. (98) and thus predict the species 
concentration, cA. The task of extracting a useful 
relation for vA from Eq. (108) is not as difficult as it 
might appear, provided that we are willing to make a 
few reasonable simplifications. We begin our 
analysis of the species momentum equation by 
making use of the following representation for the 
species stress tensor 
 ,A A Ap viscous fluid   τT I  (130) 

which is the species analogy of Eq. (73). In this case, 
pA is the partial pressure of species A and A is the 
viscous stress tensor for species A. Use of Eq. (130) 
allows us to write Eq. (108) as 

   

1

A A A A A A A A

B N

A AB A A
B

p
t

r





        



    

v v v b

P vτ
 (131) 

In addition to the restrictions imposed by Eq. (130), 
we now limit our analysis to ideal mixtures so that 
the partial pressure can be written as 
 ,A Ap x p ideal mixture  (132) 

in which xA is the mole fraction of species A and p is 
the total pressure. Use of this representation for the 
partial pressure allows us to arrange Eq. (131) in the 
form 

   

1

, 1, 2, ..., 

A A A A A A A A A

B N

A A A AB
B

x p
t

r p x A N





           



     

v v v b

v P

τ
(133) 

Our next step in the analysis of the species 
momentum equation is the use of Maxwell’s 
representation for the force PAB which we express as 
(Chapman and Cowling, 1970, page 109) 

( )
, , 1, 2, .....,A B B A

AB
AB

px x
A B N


 

v v
P

D
 (134) 

It should be intuitively appealing that the force 
exerted by species B on species A should depend on 
the velocity difference, vBvA. In addition, one can 
develop arguments to show that the term pxAxB is 
proportional to the frequency of collisions between A 
and B, and the force exerted by B on A should 
certainly be proportional to the frequency of 
collisions between the two molecular species. It is 
important to understand that Eq. (134) was 
developed for dilute gases in which only binary 
collisions need be considered, and that the details of 
the collision process are accounted for in the binary 
diffusion coefficient, ABD . The binary diffusion 

coefficients all satisfy the relation 

 , , 1, 2, ...,AB BA A B N D D  (135) 

and when we substitute Eq. (134) into Eq. (133) we 
obtain a result that can be expressed as 

   



1

1

( )
, 1, 2, ...,

A A A A A A A A A

B N
A B B A

A A A
B AB

p x p
t

x x
r x A N







 
         


    

v v v b

v v
v

τ

D
  (136) 
Here we have N equations for the N species velocity, 
vA, vB, …, vN, and it would appear that we are faced 
with an extremely complex problem. Nowhere in the 
chemical engineering literature is one confronted 
with this equation as a means for determining the 
species velocity, and the reason for this is that the N 
complex equations represented by Eqs. (136) can be 
arranged in terms of N relatively simple equations. 
The reason for this simplicity is that the left hand 
side of Eqs. (136) is usually small compared to the 
two terms on the right hand side. We can express this 
situation as 
 , 1, 2,3,...,A A A A N       (137a) 

 , , 1, 2,3,...,A A A A N     (137b) 

however, if we set 0A   we are left with only N 1 

independent equations since A and A are 
constrained by 

 
1 1

0 , 0
A N A N

A A
A A

 

 

      (138) 

To develop the simple equations associated with Eqs. 
(136), we first note that the sum over all N equations 
leads to 

   



1

1

0

A N

A A A A A A A A
A

A A A

p x p
t

r






 
       
    

 v v v b

vτ

(139) 

This can be arranged in the form 

 

 

 

1

1 1

( )
A=N

A A
A=

A=N A=N

A A A A A A
A= A=

p
t

r


       



    



 

v vv b

u u vτ
 (140) 

and on the basis of Eqs. (112) and (117) we have 

 

 

 
1

( )

A=N

A A A A
A=

p
t


        



   

v vv b

u uτ
 (141) 

It is consistent with the definition of the stress tensor 
given by Eq. (127) to define the viscous stress tensor 
according to 

  
1

A=N

A A A A
A=

  u uτ τ  (142) 

Use of this result along with the continuity equation 
given by Eq. (70) allows us to express Eq. (141) in 
the form 

 
D

p
Dt

      
v

b τ  (143) 
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Rather than attempt to solve Eqs. (136) for all the N 
species velocities, we use Eq. 143 to determine the 
mass average velocity and Eqs. (136) to determine 
Nspecies velocities. This means that the N  
species velocities are determine by 

   



1

1

( )
,

1, 2, ..., 1

A A A A A A A A

B N
A B B A

A A A A
B AB

p x p
t

x x
r x

A N







 
        


      

 



v v v b

v v
vτ

D
 (144) 

while the N th species velocity is determined by 

 1 1

1
......N A A B B N N

N
          

v v v v v (145) 

in which v  is obtained from a solution of Eq. (143). 
The use of Eqs. (143) and (144) in place of 

Eqs. (136) will only be of value if the left hand side 
of Eqs. (144) is negligible. We assume that this is the 
case and we assume that small causes give rise to 
small effects (Birkhoff, 1960, page 4) so that Eq. 
(144) leads to the well known Stefan-Maxwell 
equations given by 

1

( )
0 , 1, 2, ..., 1

B N
A B B A

A
B AB

x x
x A N






     v v

D
(146) 

If the ideal mixture relation given by Eq. (132) is 
replaced with a general equation of state 

 

1( , , ,...., , , )A A B C Np f x x x x T p  (147) 

the analysis becomes more complex and the details 
are presented in Appendix E.  There we conclude 
that the so-called generalized Stefan-Maxwell 
equations should take the form  

 

 

1

ln

( )
, 1, 2, ..., 1

A
A A A

B N
A B B A

B AB

x
x

RT
x x

A N




     


   v v

D

 (148) 

in which A is the activity coefficient and A is the 
chemical potential. When Eq. (132) is indeed a valid 
approximation for the partial pressure, Eq. (146) can 
be used with confidence provided that the following 
inequality is satisfied: 
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v

v v
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D

 (149) 

Here we have indicated that we can compare the left 
hand side of Eq. (144) with either of the two terms 
on the right hand side. In general, it is easier to 
estimate xA but there may be situations in which the 
second term involving vB vA is preferred. The 
constraints related with the restrictions associated 
with Eq. (149) were originally explored by Whitaker 
(1986, page 9); however, more reliable constraints 
can be developed by using the total momentum 

equation to simplify the left hand side of Eq. (149), 
and this is done in the following paragraphs. 

In order to simplify the terms on the left hand 
side of Eq. (149), we represent the species velocity in 
terms of the mass average velocity and the diffusion 
velocity 
 A A v v u  (150) 

to obtain the following expression 
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Here we have made repeated use of Eq. (150) along 
with the continuity equation given by Eq. (89). At 
this point we can make use of Eq. (74) to simplify 
Eq. (151) to the form 
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and this allows us to express Eq. (149) as 
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The various terms on the left hand side of this 
inequality can take on both positive and negative 
values, and a conservative approach to satisfying the 
inequality is to require the following four inequalities 
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B N
A B B A

B AB

x x



 v v

D
 (154d) 

Here it is understood that these inequalities apply to 
1, 2, ..., 1A N  . We refer to these inequalities as 

restrictions that must be satisfied if the Stefan-
Maxwell equations are to provide reliable solutions 
to the N species momentum equations. In order to 
obtain constraints (Whitaker, 1988) we must develop 
estimates of all the terms. If gravity is the only body 
force, we have b = bA = g and Eq. (154a) is 
automatically satisfied. However, if species A is an 
ionic species and an electrostatic field exists, the 
body force term must be retained and Eq. (146) must 
be modified in an appropriate manner (Bird et al., 
2002, page 781). The restriction given by Eq. (154b) 
indicates that we need an estimate of p and for 
some processes this may be difficult. The third 
restriction given by Eq. (154c) presents a problem 
since little is known about the partial stress, A, 
however, it seems plausible that 
 A A A      τ τ τ  (155) 

which leads to the more conservative restriction 
given by 

 1

1

( )
or

B N
A B B A

A A
B AB

x x
p x







     v v

τ 
D

 (156) 

In this case one might be able to use Eq. (75) to 
obtain an estimate of τ  and thus develop a 
constraint associated with the restriction given by 
Eq. (154c). 

The inequality given by Eq. (154d) involves 
the diffusion velocity, thus it might be easier to 
explore this restriction in the form 
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u
v u u v
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 (157) 

since both sides of the inequality are directly related 
to the diffusion velocity. For gas phase processes, it 
may be convenient to approximate the pressure 
according to (Whitaker, 1981, page 402) 
 2p C  (158) 

where C represents the speed of sound that is on the 
order of 300m/s for a gas at atmospheric pressure. 

The problem of establishing the domain of 
validity of the Stefan-Maxwell equations is much 
more difficult than identifying the constraints 
associated with laminar boundary layer theory 
(Schlichting, 1968, page 117) or lubrication theory 
(Batchelor, 1967, page 219) or geostrophic flows 
(Dutton, 1976, page 512). Those special cases are 
well known and have received considerable attention 
while the species momentum equation has generally 
been ignored as a source of information for the 
solution of mass transfer problems. In the next 
section we examine the classic diffusion process 
associated with the Stefan diffusion tube and we 

illustrate how one could begin to explore the 
inequalities given by Eqs. (154). 
 
2.7 Stefan diffusion tube 
 
In the previous paragraphs we have outlined an 
approach to the determination of the species velocity, 
vA where A = 1, 2, …, N. Various approximations 
have been imposed, such as the ideal mixture 
condition given by Eq. (132) and the simplified 
representation for the diffusive force given by Eq. 
(134). While restrictions have been imposed that 
allow us to derive the Stefan-Maxwell equations, no 
constraints have been presented (Whitaker, 1988). 
Here one must remember that restrictions indicate 
what must occur in order for a result to be valid, 
while constraints indicate when these conditions 
occur in terms of parameters that are known a priori. 
To illustrate how one can develop constraints, we 
consider the classic process of binary diffusion in the 
Stefan diffusion tube illustrated in Fig. 8. In this 
example, we assume that the gas passing over the top 
of the tube is pure species B and that the liquid in the 
bottom of the tube is pure species A. 

For a binary diffusion process, there are two 
momentum equations to be considered. One of these 
should be a Stefan-Maxwell equation as indicated by 
Eq. (146) while the other should be the total 
momentum equation as indicated by Eq. (143). 
However, in the classic analysis of the Stefan 
diffusion tube (Bird et al., 202, page 545), the total 
momentum equation is ignored and is replaced by the 
following assumption for the velocity of species B in 
the gas phase: 
Assumption: 0B v  (159) 

The motivation for discarding Eq. (143) in favor of 
Eq. (159) is based on the fact that vB is very small 
compared to vA and is, in fact, small enough so that it 
can be set equal to zero. The restriction given by 
Restriction: B Av v  (160) 

is consistent with Eq. (159) if one is willing to 
assume that small causes give rise to small effects. 
One can be more precise about the velocity of 
species B and note that 

 , ( )B

d
z t

dt
 v k

   (161) 

if the solubility of species B in species A is 
negligible. The species jump condition (Whitaker, 
1992) can be used to estimate the velocity of species 
A in the gas phase according to 

  , ,A A liq A gas

d
c c

dt
v O


 (162) 

When this estimate is compared with Eq. (161) we 
conclude that the assumption given by Eq. (159) can 
be replaced with the following constraint: 
Constraint:  , , 1A liq A gasc c   (163) 

While the simplification indicated by Eq. (159) is 
certainly plausible based on the constraint given by 
Eq. (163), discarding a governing equation should al- 
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Fig. 8. Stefan diffusion tube. 
 
ways be done with care. Having provided some 
words of caution, we adopt Eq. (159) as an 
acceptable solution to the momentum equation for 
species B. 

The second momentum equation is the 
species momentum equation for species A and this is 
given by Eq. (146). For the binary system under 
consideration, with the constraint indicated by Eq. 
(159), the species A momentum equation takes the 
form 

Species A: 0 A B A
A

AB

x x
x  

v

D
 (164) 

Equation (159) could be considered as one of 
Birkhoff’s (1960, page 4) plausible intuitive 
hypotheses, while Eq. (164) is a result of imposing 
the restrictions indicated by Eqs. (154). 
 
Body force 
 
To explore the first of the restrictions given by Eqs. 
(154), we consider a binary system subject to Eq. 
(159) in order to obtain 

Restriction: 1 ( ) A B A
A A

AB

x x
p  

v
b b 

D
 (165) 

Use of the definition given by Eq. (117) leads to 

 1 ( ) A B A
A B B A

AB

x x
p   

v
b b 

D
 (166) 

For a binary system with 0B v  the velocity of 

species A is related to the mass average velocity by 

 A
A



v

v  (167) 

We can use this result, along with Eq. (158), to 
express the body force restriction in terms of the 
following constraint: 

Constraint:
3(1 )

(1 )
A A

A B A
A A AB

x x M C
 

 
b b

D
 (168) 

in which M is the Mach number defined by 

 
v

M
C

  (169) 

For a binary system, the constraint given by Eq. (168) 
will generally be satisfied by the assumption 
 A B  b b g b  (170) 

since a ternary system will be required to produce 
ionic species and body forces that are different than 
the gravitational force. 
 
Viscous force 
 
At this point we ignore the restriction given by Eq. 
(154b) and move on to the restriction given by Eq. 
(154c). This can be used, in the form given by Eq. 
(156), with Eq. (164) to obtain 

Restriction: 1 A B A
A

AB

x x
p   

v
τ 

D
 (171) 

Estimating viscous effects for process illustrated in 
Fig. 8 is not a straightforward matter. For the classic 
problem of laminar flow in a tube, one could 
estimate the viscous stress and its divergence as 
(Whitaker, 1986, page 16) 
    2,D D    O v O vτ τ  (172) 

Here  represents the viscosity, v represents the mass 
average velocity, and D represents the diameter of 
the tube as indicated in Fig. 8. This estimate of τ  
would be appropriate for the parabolic velocity 
profile shown in Fig. 9a but not for the flat velocity 
profile (Whitaker, 1967) shown in Fig. 9b. An 
approach that is more appropriate for the diffusive 
process illustrated in Fig. 9b is to estimate the value 
of τ  using the average value according to 

1 1
dV dA          nτ τττ 

V AV V
 (173) 

Here V  is the control volume illustrated in Fig. 8 and 
A is the surface area of that control volume. In 
terms of the three distinct areas associated with the 
control volume, this result takes the from 

( ) ( ) ( )

2

4

( ) ( )

zz zzz L t t z t
rz r DL t L t D
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

   
       

 
τ   (174) 

It seems plausible to neglect the viscous stresses at 
the entrance and exit of the control in order to 
simplify this result to 

 2
4 rz r D

D


 
   


τ  (175) 

In order to develop an estimate of rz   at the wall, 

we first make use of Maxwell’s one-sided flux 
expression given by (Kennard, 1938, page 63) 

1
4

flux of species  

crossing a surface

   from one side
A A

A

n C

 
   
 
 

 (176) 

 

 



S. Whitaker / Revista Mexicana de Ingeniería Química Vol. 8, No. 1 (2009) 1-33 

www.amidiq.org 19

  

Fig. 9. Velocity profiles in a Stefan diffusion tube 
 
Here nA is the number density of species A and CA is 
the mean speed of species A which is on the order of 
the speed of sound. It is important to note that Eq. 
(176) is valid for an unbounded gas at equilibrium. 
In our analysis of the momentum transfer process at 
a gas-solid interface, we assume that the rate at 
which molecules strike the surface is given by 

1
4

 flux of species  molecules

incident upon a wall bounding

    a semi-infinite region
A A

A

n C

 
   
 
 

 (177) 

The idea behind the application of Eq. (176) to 
produce Eq. (177) is that the molecules leaving the 
wall do not alter the nature of the incoming 
molecules. 

When the mean free path is small compared 
to the tube diameter, the tangential component of 
momentum that is transferred to the wall by an 
incoming molecule can be approximated by 

/2

 average tangential component

of momentum transferred to the v

wall per molecule of species 
A Az r D

m

A


 
   
 
   

(178)

 
in which mA is the mass of a molecule of species A. 
Here we have evaluated the momentum of a 
molecule of species A at the wall because the mean 
free path for species A is small compared to the tube 
diameter. To be very clear about this situation, we 
denote the mean free path of species A by lA and note 
that Eq. (178) is constrained by the inequality 
 A D   (179) 

In order to obtain the rate of tangential momentum 
transferred to the wall by species A, we multiply the 
flux of species A by the momentum of species A 
leading to 

/2

     rate of tangential
1

momentum transferred to v
4

 the wall by species 
A A A Az r D

n C m

A


 
   
 
 

(180) 

This representation for the rate of tangential 
momentum transferred to the wall by species A 
assumes that there is no net tangential momentum 
associated with the molecules reflected from the 
wall, i.e., the molecules are diffusely scattered by the 
wall. To obtain the total rate of tangential momentum 
transferred to the wall, we sum over all species to 
obtain 

total rate of tangential

momentum transferred

         to the wall

 
 
 
 
 

1
/2

1
v

4

A N

A A A Az
A

r D
n C m




  (181)

 
The species density is the mass of a molecular times 
the number density 
 , 1, 2,...,A A An m A N    (182) 

and use of this result in Eq. (181) leads to 

1
/2

 total rate of tangential
1

momentum transferred
4

         to the wall

v
A N

A
A A Az r D

C





 
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 
 

 (183) 

Here we recognize that the total rate of tangential 
momentum transferred to the wall is equal to the 
shear stress at the wall, and we express this idea as 

2

1
/2

 total rate of tangential

momentum transferred

         to the wall

1

4
v

rz r D

A N

A
A A Az r D
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


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





(184) 

For the special binary system under consideration, 
we have v vBz Az  and the rate of transfer of 

tangential momentum takes the form 

 
2 /2

1
v

4rz A A Azr D r D
C

      (185) 

Directing our attention to the flat velocity profile 
illustrated in Fig. 9b, we use this result in Eq. (175) 
to obtain 

 
vA A AzC

D


     τ τ  (186) 

Use of Eq. (186) in Eq. (171) provides the inequality 

 1 v vA A A Az A B Az

AB

C x x
p

D
   

D
 (187) 

At this point it is convenient to represent the pressure 
using Eq. (158) and use the approximation CA ≈ C in 
order to extract the following constraint from Eq. 
(187): 

Constraint: 
2

(1 )
1A A

ABA

x x CD



D

 (188) 

Given the following values for the system illustrated 
in Fig. 8 

2300 m/s , 0.1cm s , 0.1 cmABC D  D  (189) 

we find that 
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AB

C D


D
 (190) 

and the constraint given by Eq. (188) will generally be 
satisfied unless xA is very, very close to one. One 
could also argue that the constraint given by Eq. (188) 
could also fail when D is much, much less than 0.1 
cm; however, the tube diameter must be much, much 
larger than the mean free diameter, as indicated by Eq. 
(179), thus arbitrarily small values of D are excluded 
from this analysis. 
 
Pressure force 
 
Returning to the restriction given by Eq. (154b), we 
make use of Eq. (159) to obtain the inequality 

Restriction: 1( ) A B A
A A

AB

x x
p x p   

v
D

 (191) 

In this case we estimate the pressure gradient as 

 ( ) ( ) ( )
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O    (192) 

To obtain a representation for the pressure change in 
the tube, we make use of the macroscopic 
momentum balance associated with Eq. (143) when 
inertial effects are negligible. This gives rise to a 
macroscopic momentum balance of the form 
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 (193) 

Neglecting the viscous stresses at the entrance and 
exit of the control volume, along with the 
gravitational term, leads to 

( ) ( ) ( ) /2
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This result leads to the estimate given by 
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and when used in Eq. (191) we obtain 

Restriction: /2
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rz r D A B A
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AB

x x
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 (196) 

At this point we can extract an estimate of the wall 
shear stress given by Eq. (185) to obtain 
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and use of Eq. (158) to estimate the pressure leads to 
the constraint given by 

Constraint: 
(1 )

1
( )
A A

A A A AB

x x CD

x


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
D

 (198) 

This constraint is similar to that given by Eq. (188); 
however, the left hand side does not tend to zero as 
xA approaches one. 
 
Local acceleration 
 
We now direct our attention to the last of the four 
restrictions given by Eqs. (154), and we express the 
restriction associated with the local acceleration as 

Restriction: 1 A A B A
A

AB

x x
p

t
  
   

u v
D

 (199) 

An estimate of the local acceleration is given by 

 A A

t t
      

u u
O  (200) 

in which t* is the characteristic time associated with 
the process illustrated in Fig. 8. for a binary system 
in which 0B v  we can relate the species velocity to 

the diffusion velocity by 
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A
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

u

v  (201) 

Use of Eq. (200) and Eq. (201) in the restriction 
given by Eq. (201) provides 

 
(1 )

1
1

A A

A AB A

x x p t
 


D

 (202) 

and when the pressure is estimated by Eq. (158) we 
obtain the following constraint: 

Constraint: 
2(1 )

1
(1 )

A A

A A AB

x x C t
 


D

 (203) 

In general it is very, very difficult to violate this 
constraint. 
 
Convective acceleration 
 
The restriction associated with the convective 
acceleration term in Eq. (154d), subject to the 
condition of a binary mixture with 0B v , provides 

the special case given by 

Restriction:  1 A B A
A A A A

AB

x x
p    

v
v u u v 

D
(204) 

In this case the characteristic length associated with 
uA and v is L(t) illustrated in Fig. 8. One can 
express vA and uA in terms of the mass average 
velocity to obtain 

 
(1 )

, A
A A

A A


 
 

vv
v u  (205) 

and this allows us to represent Eq. (204) in the form 

1 (1 ) (1 )A A A B
A

A A A A AB

x x
p

               

v v vv
v 

D

 

 (206) 
Using L(t) in the estimates of the gradients suggests 
the following form 

   2

1
1

( )
AA A B

A
A ABA

x x

p L t


    

vv v
O 

D
 (207) 
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At this point we make use of Eq. (158) for the 
pressure in order to express this result in the form 

Constraint:
   (1 ) ( )

1
1
A A

A
A AB

x x L t C

M


   

O
D

 (208) 

in which M is the Mach number defined by 

 
v

M
C

  (209) 

Clearly this constraint will always be satisfied for the 
process illustrated in Fig. 8. 
 
A special form of the Stefan-Maxwell equations 
 
When the constraints indicated by Eqs. (168), (188), 
(198), (203) and (208) are satisfied, we expect that 
Eq. (164) will indeed be a valid approximation for 
the species A momentum equation that we repeat 
here as 

 0 A B A
A

AB

x x
x  

v

D
 (210) 

This can be used to express the molar flux of species 
A in the form 

 AB
A A A A

B

c
c x

x
   v N

D
 (211) 

and for the one-dimensional process illustrated in 
Fig. 8 we have 

 AB A
Az

B

c d x
N

x dz
 

D
 (212) 

Other special forms of the Stefan-Maxwell equations 
are given by Whitaker (2009). 
 
2.8 Knudsen diffusion 
 
One crucial constraint leading to the Stefan-Maxwell 
equations given by Eqs. (146) is the constraint on the 
mean free path indicated by Eq. (179). When that 
constraint is satisfied we are assured that molecule-
molecule collisions are much more numerous than 
molecule-wall collisions. When the inverse of that 
constraint is valid, i.e., when 
 A D   (213) 

we have the situation illustrated in Fig. 10 where we 
have shown a single molecule-molecule collision and 
many molecule-wall collisions. As the mean free 
path becomes large relative to the tube diameter, D, 
the diffusive force becomes negligible, i.e., PAB  0 
and the simplification leading from Eq. (131) to Eqs. 
(143) and (146) is no longer valid. This requires that 
we return to Eq. (131) in the form given by 

 
   

, 1, 2...,

A A A A A

A A A

t

p A N


  


      

v v v

g τ
 (214) 

in which the term rAvA has been discarded with the 
idea that the influence of chemical reactions can be 
ignored. In addition, we have replaced bA with g with 
the idea that gravity is the only body force. At this 

point we make use of the macroscopic momentum 
balance associated with Eq. (214) in order to obtain 

A A A A A A

A A

d
dV dA dV

dt

p dA dA

     

  

  

 

v v v n g

n n τ
V A V

A A

 (215) 

Here V  represents the control volume illustrated in 
Fig. 10 and A  represents the surface of that control 
volume. The component of this equation in the z-
direction is given by 

 
A A A A A

A A A

d
dV dA
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dV p dA dA

     
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 

  

v k k v v n

g k n k n kτ
V A

V A A

(216) 

and for a steady, uniform flow this simplifies to 
0 A A AdV p dA dA         g k n k n kτ

V A A

 (217) 

Evaluating the terms in this momentum balance leads to 

 
2 2
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2 2
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/2
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 
     

   

 (218) 

For a uniform flow we can impose the condition 

 0Azz Azzz L z 
      (219) 

so that Eq. (218) simplifies to 
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4 4A z A Az L z

Arz r D

D L D
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

 
       

   
 (220) 

This momentum balance can be divided by D2L/4 in 
order to obtain 

0

/2

4
0

A Az L z
A z Arz r D

p p
g

L D
 



    
       (221) 

and we take the limit L  0 in order to express this 
result in the form 

 
/ 2

4
0 A

A z Arz r D

p
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z D 

 
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 (222) 

At this point we refer to Eqs. (180) through (182) to 
estimate the partial stress as 

 
2 /2

1
v

4Arz A A Azr D r D
C

      (223) 

One must remember that Eq. (180) is based on the 
approximation given by Eq. (176) and that the latter 
is valid for an unbounded gas at equilibrium. For the 
process illustrated in Fig. 10, we can assume that 
both the velocity and the pressure will be uniform 
over any cross section of the tube, and this allows us 
to express Eq. (222) as 

 
1

0 vA
A z A A Az

p
g C

z D


    


 (224) 

In many cases, the following inequality is valid 
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Fig. 10. Knudsen diffusion 
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vz A Azg C
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and Eq. (224) simplifies to 
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A A Az

p
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z D


  


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The species mass density can be expressed in terms 
of the species molar concentration according to 
 A A Ac M   (227) 

in which MA is the molecular mass of species A. Use 
of this expression in Eq. (226) leads to 

 v A
A Az

A A

pD
c

M C z


 


 (228) 

in which cAvAz is the molar flux often represented by 
NAz. Expressing the partial pressure of species A in 
terms of the ideal gas law leads to 

 
 AA A
c RTp c

RT
z z z

 
 

  
 (229) 

and use of this expression in Eq. (228) provides a 
result that can be expressed as 

 , , 1, 2,...,A
Az A K

c
N D A N

z


  


 (230) 

The coefficient DA,K has units of m2/s and it is known 
as the Knudsen diffusion coefficient for molecular 
species A. It is defined explicitly by 

 , , 1, 2,...,A K
A A

RT D
D A N

M C
   (231) 

Like the Stefan-Maxwell equations, this result has its 
origins in the species momentum equation, i.e., it is a 
mechanical result. Knudsen diffusion usually occurs 
in porous media where pores of small diameter are 
prevalent (Jackson, 1977, page 8). 
 
2.9 Summary 
 
In this section we have seen how the species 
momentum equations given by Eqs. (136) can be 
used to obtain the total momentum equation given by 
Eq. (143). In addition, we have shown how the 
species momentum equations can be used to produce 
the Stefan-Maxwell equations given by Eqs. (146). 
The restrictions that are required to produce the 
Stefan-Maxwell equations are given by Eqs. (154) 
and the constraints associated with those restrictions 
are developed for the Stefan diffusion tube illustrated 
in Fig. 8. The treatment of the species momentum 
equations is not a straightforward process. This is 
illustrated in the classic treatment of the Stefan 
diffusion tube, where one of the governing 

differential equations was discarded in favor of a 
plausible intuitive hypothesis. The Stefan-Maxwell 
equations describe mass transport when the diffusive 
force plays an important role in the species 
momentum equation. When the mean free path is 
large compared to the characteristic length associated 
with a system, the diffusive force becomes negligible 
and the species momentum equations become 
uncoupled. Under these circumstances the N species 
momentum equations lead to the Knudsen diffusion 
equation. 

The manipulation of the species momentum 
equations is a crucial element of chemical 
engineering analysis since those equations are 
required to determine the species velocities, vA, vB , 
…, vN. In turn, knowledge of the species velocities is 
essential for the determination of adsorption and 
desorption rates, inter-phase transport rates, and 
heterogeneous reaction rates. These processes will be 
considered in the next section. 

 
3. The interface between two phases 

 
In Sec. 1 of this work, the interface between physics 
and chemical engineering was explored from the 
point of view of the laws of mechanics. Constructing 
a connection between the perspective of a physicist 
and the perspective of a chemical engineer is based 
on the work of Euler and Cauchy. Understanding 
Euler’s laws, Cauchy’s equations, and the Euler cut 
principle allows the chemical engineer to create a 
fundamental understanding of fluid mechanics. What 
is more important is that the work of Euler and 
Cauchy provides the framework for a study of 
multicomponent systems. In terms of mechanics, this 
leads to a method of determining the species 
velocities as outlined in the previous section. 
 
3.1 Hierarchical systems 
 
Most chemical engineering systems are hierarchical 
in nature, thus important processes take place at a 
variety of length scales. This perspective is shown in 
Fig. 11 where we have illustrated a large-scale 
chemical production system that may consist of 
several (in this case three) specialized chemical 
plants. Within one of these chemical plants we have 
illustrated a purification unit called a scrubber and 
we have further illustrated a bubble in the scrubber 
where mass transfer takes place. Finally, we have 
illustrated the gas-liquid interface in which the liquid  
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Fig. 11. Hierarchical systems 
 
is identified as the -phase and the gas is identified 
as the -phase. The orientation of the interface is 
identified by the unit normal vector, n, that is 
directed from the -phase toward the -phase. At 
every length scale illustrated in Fig. 11 there are 
challenging engineering problems associated with 
the purification of raw materials and the production 
of useful products. However, if nothing happens at 
the  interface and the other interfaces within the 
entire system, nothing happens in the entire system! 
We explore this point of view in the following 
paragraphs. 
 
3.2 Mass transport 
 
The most dominant characteristic of a chemical 
species is its concentration, cA with A = 1, 2,…, N. If 
we could predict this concentration for all species of 
interest, many chemical engineering problems would 
be solved problems. Prediction of this concentration 
requires that we solve the species transport equation 
given earlier by Eq. (98) and repeated here as 

   , 1, 2,..,A
A A A

c
c R A N

t


   


v  (232) 

Here vA represents the species velocity for species A, 
and RA represents the net molar rate of production 
(per unit volume) of species A owing to chemical 
reaction. In order to solve Eq. (232), in a general 
sense, we need to be able to determine the function 
 ( , ,...., )A A A BR c c TF  (233) 

along with the species velocity, vA, and an 
appropriate set of boundary conditions. The 
temperature will be determined by the laws of 
thermodynamics (Truesdell, 1969) while the species 
velocity will be determined by application of the 
laws of mechanics (Truesdell and Toupin, 1960). In 
order to focus attention of the net molar rate of 
production of species A, we ask the question: What 
would happen if all reaction rates were zero, i.e., 
 etc. 0A B C DR R R R      (234) 

Clearly the answer is that the earth would be a 
biologically inert sphere not at all like the planet with 
which we are familiar. Along the same lines, we can 
focus our attention of the species velocity and ask the 
question: What would happen if all species velocities 
were the same, i.e., 
 etc.A B C D   v v v v  (235) 

If all molecular species had the same velocity, there 
would be no mixing and thus no chemical or 
biological reactions as indicated by Eq. (234). 
Clearly Eq. (232) is a central issue for chemical 
engineers and the determination of the species 
velocity and the net rate of production owing to 
chemical reactions is of the utmost importance. 

The direct solution of Eq. (232) everywhere 
would lead to the prediction of concentration, cA, the 
flux, cAvA, and the rate of reaction, RA. This, in turn, 
would provide the solution to many, many chemical 
engineering problems. However, the solution of Eq. 
(232) in the neighborhood of an interface is 
complicated by the fact that cA, vA, and RA change 
very rapidly in this region. For example, if there is 
significant adsorption at the interface between the -
phase and the -phase illustrated in Fig. 11, the 
concentration profile has the form illustrated in Fig. 
12. The solution of Eq. (232) can be carried out in 
the interfacial region (Wood, et al., 2004) to predict 
cA; however, the computation is quite complex and in 
general it is avoided by the construction of a jump 
condition for the - interface. In this approach, the 
direct use of Eq. (232) is avoided and instead one 
makes use of governing equations for the -phase 
and the -phase given by 

 
( ) ,

1, 2,3,..., , in the -phase

A
A A A

c
c R

t
A N


  


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( ) ,

1, 2,3,..., , in the -phase

A
A A A

c
c R

t
A N


  


   


 

v
 (237) 

These equations are solved in both the homogeneous 
regions of the  and -phases and in the regions up to 
the dividing surface illustrated in Fig. 12. The 
boundary condition that joins these two transport 
equations is constructed in a manner that requires Eq. 
(232) to be satisfied on the average in the interfacial 
region. This leads to an interfacial flux boundary 
condition that can be derived using only undergradu- 
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Fig. 12. Concentration distribution caused by 
adsorption at the - interface. 
 
ate vector analysis (Stein and Barcellos, 1992), and 
the result is given by (Whitaker, 1992). 
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 (238) 
When the interface can be treated as flat, the 
concentration profile illustrated in Fig. 12 leads to 
the surface concentration given by 

   
20

2 0

zz

As A A A A

z z

c c c dz c c dz


 
 

      (239) 

and the net rate of production owing to 
heterogeneous reaction, RAs, is defined in a similar 
manner. The boundary condition, or jump condition 
given by Eq. (238), provides a connection between 
the interfacial fluxes in the two phases, and to 
complete the formulation of this mass transfer 
process, we need a connection between the  
concentrations in the two phases. When the condition 
of local thermodynamic equilibrium is valid, the 
connection between the concentration in the two 
phases is given in terms of the equivalence of the 
chemical potentials, i.e., 

, 1, 2,.., , at the -  interfaceA A A N        (240) 

The chemical potentials are functions of the state of 
the system, and Eq. (240) can be used to develop a 
relation between either the concentrations in the two 
phases or the mole fractions in the two phases. When 
the condition of local thermodynamic equilibrium is 
not valid, Eq. (238) can sometimes be replaced with 
an interfacial flux constitutive equation (Whitaker, 
1999, Sec. 1.1.1; Wood, et al., 2004) that provides a 
connection between the concentrations. 

In Eq. 238 we have used cAs to represent the 
surface concentration having units of moles per unit 
area. This concentration is sometimes referred to as 
the excess surface concentration and a graphical 
illustration of this concentration is illustrated in Fig. 
12. The mean curvature of a surface is defined by 
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1 1 1

2
H

R R

 
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 
 (241) 

where R1 and R2 are the principle radii of curvature. 
With the use of more advanced differential geometry 
(McConnell, 1957; Slattery, 1990) one can show that 
the surface gradient of the unit normal vector is equal 
to twice the mean curvature 
 2s H  n

 
 (242) 

in which H is given in terms of the principle radii of 
curvature by Eq. (241). Use of this result allows us to 
express the jump condition as 
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 (243) 
in which we need to pay attention to the sign of the 
curvature, H. When H = 0 (flat surface) or when 

0 w n  (zero speed of displacement), there is no 

changing surface area and 2 ( )Asc H w n  is equal to 

zero. For the case of expanding or contracting 
bubbles and drops, this term must be considered 
whenever the surface concentration, cAs, plays an 
important role in the jump condition. The first term 
on the right hand side of Eq. (243) represents the 
interfacial transport of species A from the -phase to 
the -phase, while the second term represents the 
classic rate of heterogeneous reaction. Clearly the 
jump condition given by Eq. (243) is a central issue 
in the world of chemical engineering since it 
contains the phenomena of adsorption, surface 
transport, surface accumulation, interfacial mass 
transfer and heterogeneous reaction. 
 
3.3 Adsorption/Desorption 
 
If the -phase is a rigid solid phase at which 
adsorption and/or desorption takes place, Eq. (243) 
for species A takes the special form given by (with 

  n n ) 
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A A

c
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This provides a boundary condition for Eq. (237) 
which we repeat here as 
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In order to connect the surface concentration, cAs, to 
the bulk concentration, cA, we need to assume the 
condition of local thermodynamic equilibrium (see 
Eq. 240) or we need to develop an interfacial flux 
constitutive equation. If the condition of local 
thermodynamic equilibrium is valid and the 
adsorption isotherm is linear, the surface 
concentration is given by 
 
Local equilibrium: 
 , at the -  interfaceAs eq Ac K c     (246) 

Under these conditions the jump condition takes the 
form 

, at the -  interfaceA
eq A A

c
K c

t


  


   


v n  (247) 

In this simple case of adsorption we see a connection 
between mass transfer (Eq. 245), thermodynamics 
(Eq. 246), heat transfer (Keq is a function of 
temperature), and mechanics (Eqs. 143 and 146). If 
the condition of local thermodynamic equilibrium is 
not valid, one must develop an interfacial flux 
constitutive equation and the simplest case is the 
linear process described by 
Non-equilibrium: 

1 1 , at the -  interfaceAs
A As

c
k c k c

t  


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
 (248) 

Use of this type of constitutive equation has been 
examined by Wood et al. (2004) in some detail. 
 
3.4 Heterogeneous reaction 
 
Here we again assume that the -phase is rigid and 
we assume that the  interface is a catalytic 
surface. We neglect surface transport and assume 
that the process is either steady or quasi-steady so 
that Eq. (243) simplifies to 
0 ,

at the -  interface, 1, 2,...,
A A Asc R

A N
    

  

v n
 (249) 

The heterogeneous rate of reaction, RAs, should 
depend on the surface concentrations (Bird et al., 
2002, page 544) of the participating species, i.e., cAs, 
cBs, etc., and we express this idea as 

( , ,...., ) , 1,2,...,A A As Bss sR R c c T A N   (250) 

Here we see the need for a connection between the 
surface concentrations and the bulk concentrations at 
the  interface. If the condition of local 
thermodynamic equilibrium is valid, Eq. (250) can be 
expressed as 

( , ,...., ) , 1, 2,...,A A A Bs sR R c c T A N    (251) 

and the jump condition for heterogeneous reaction 
takes the form 

( , ,...., ) ,

at the -  interface , 1, 2,...,

A A As A Bc R c c T

A N

      

  

v n
 (252) 

Here we should note that RAs represents the net rate of 
production of species A, thus the flux of species A 
from the -phase toward the -phase is positive when 

RAs is negative. In this simple application of Eq. (243) 
to the case of heterogeneous reaction we see a 
connection between mass transfer (Eq. 245), 
thermodynamics (Eq. 251), heat transfer (RAs is a 
function of temperature), and mechanics (Eqs. 143 and 
146). If local thermodynamic equilibrium is not valid, 
one may be confronted with a three-step process 
involving (1) a rate of adsorption, (2) a rate of 
reaction, and (3) a rate of desorption. In that case, 
concepts from Sec. 3.3 need to be incorporated into 
the analysis. 
 
3.5 Interfacial mass transfer 
 
When adsorption and heterogeneous reaction are 
negligible at a fluid-fluid interface, we have the 
apparently simple case of interfacial mass transfer and 
Eq. (243) simplifies to 

( ) ( ) ,

at the  interface
A A A Ac c         

  

v w n v w n
 (253) 

Here it is important to recognize that the speed of 
displacement of the  interface, denoted by 

w n  can only be determined, in a general sense, 

by solving the equations of motion. This means that 
the speed of displacement of the interface illustrated 
in Fig. 12 is part of the solution of the fluid 
mechanical problem and not part of the problem 
statement. The hierarchical system illustrated in Fig. 
11 is likely to contain many, many moving interfaces 
at which mass transfer takes place, and dealing with 
these moving interfaces represents a challenge that is 
generally ignored in texts on mass transfer. The 
moving boundary illustrated in Fig. 8 can be treated 
in a relatively simple manner (Bird et al., 2002, page 
549) because the mass transfer process is quasi-
steady. The process of diffusion with a moving 
boundary is discussed by Crank (1956, page 99) who 
has also provided a survey of methods for treating 
moving boundary problems (Crank, 1984). 

As in the case of adsorption and the case of 
heterogeneous reaction, we need to impose either the 
condition of local thermodynamic equilibrium or we 
need to develop a model for the interfacial flux in 
order to connect xA with xA. If Eq. (240) is 
applicable, and the system is linear, we can use an 
equilibrium relation of the form 

,equilibrium at the  interfaceA A Ax K x      (254) 

in which KA is the equilibrium coefficient. For non-
linear systems, one must work with a general 
relation that can be expressed as 

( ) , equilibrium at the  interfaceA Ax x    F  (255) 

While interfacial flux constitutive equations, such as 
Eq. (248), are common in the treatment of 
adsorption/desorption phenomena and in the 
treatment of heterogeneous reactions, they are not for 
mass transfer process that can be described by Eq. 
(253). In this simple application of Eq. (243) to the 
case of interfacial mass transfer we again see a 
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connection between mass transfer (Eq. 245), 
thermodynamics (Eq. 254), heat transfer (KA is a 
function of temperature), and mechanics (Eqs. 143 
and 146). 
 
3.6 Summary 
 
In this section we have examined three mass transfer 
processes that occur at phase interfaces, and all three 
of these processes are related by the species mass 
jump condition. We have seen how the species mass 
jump condition serves as a focal point for the 
connection of mass transfer, heat transfer, 
thermodynamics, and mechanics. As a focal point, 
the jump condition serves to connect various areas of 
chemical engineering that are often taught as 
separate and isolated subjects. This isolation appears 
in various forms and perhaps the most obvious form 
is visible in terms of the so-called special discipline 
of chemical reaction engineering. Other special 
disciplines are in the making; however, the physical 
processes in the world around us care little for 
special disciplines. Instead they are bound only by 
the laws of physics. 
 
Conclusions 
 
In this study we have examined the interface 
between physics and chemical engineering in terms 
of the subject of mechanics. Connecting the two 
different perspectives required a study of the work of 
Euler and Cauchy which, in turn, provided the basis 
for a study of the mechanics of multicomponent 
systems. Finally we examined a single equation, the 
species mass jump condition, that served to illustrate 
the connections between mass transfer, heat transfer, 
thermodynamics, and chemical reaction. 
 
Nomenclature 
 
A surface area of a fixed control volume, m2 

Am(t) surface area of a material volume, m2 

Aa(t) surface area of an arbitrary moving control 
volume, m2 

AA(t) surface area of a species A material volume, 
m2 

A area, m2 

b total body force per unit mass, N/kg 
bi i = 1, 2, …, N, body force exerted by a large, 

external body on the ith mass point, N 
b12 body force per unit mass exerted by body #2 

on body #1, N/kg 
b21 body force per unit mass exerted by body #1 

on body #2, N/kg 
cA molar concentration of species A, mole/m3 

cA molar concentration of species A in the -
phase, mole/m3 

cA molar concentration of species A in the -
phase, mole/m3 

cAs surface concentration of species A associated 
with the  interface, mole/m2 

C speed of sound, m/s 
CA speed of sound for species A, m/s 
D diameter, m 
DAB DBA, binary diffusion coefficient for species A 

and B, m2/s 
DA,K Knudsen diffusion coefficient for species A, 

m2/s 
f force, N 
f12 force exerted by body #2 on body #1, N 
f21 force exerted by body #1 on body #2, N 
fij force exerted by the jth mass point on the ith 

mass point in a cloud of mass points, N 
g gravitational body force per unit mass, N/kg 
H curvature, m

i, j, k unit vectors 
I unit tensor 
Keq adsorption equilibrium coefficient, m 
KA interphase equilibrium coefficient for species A 
k1 adsorption rate coefficient, m/s 
k1 desorption rate coefficient, s

lA mean free path of species A, m 
L(t) diffusion path for the Stefan diffusion tube, m 
MA molecular mass of species A, g/mole 
m mass, kg 
mA mass per molecule of species A, kg/number 
NJA chemical composition indicator 
NA cAvA, molar flux of species A, mole/m2s 
n unit normal vector 
nA number density of species A molecules 
n  n, unit normal vector directed from the -

phase to the -phase 
P I n n, projection tensor 
PAB diffusive force per unit volume exerted by 

species B on species A, N/m3 

p pressure, N/m2 

pA partial pressure of species A, N/m2 

r position vector, m 
rCM position vector locating the center of mass, m 
rA net mass rate of production of species A 

owing to homogeneous reactions, kg/m3s 
R gas constant, J/mole K 
RA net molar rate of production of species A 

owing to homogeneous reactions, mole/m3s 
RAs net rate of production of species A owing to 

heterogeneous reactions, mole/m2s 
t time, s 
t* characteristic time, s 
t(n) stress vector, N/m2 

tA(n) stress vector for species A, N/m2 

T stress tensor, N/m2 

TA stress tensor for species A, N/m2 

Tij (i, j = 1,2,3) components of the stress tensor, 
N/m2 

T absolute temperature, K 
uA vA  v, mass diffusion velocity, m/s 
vA velocity of species A, m/s 
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v 
1

A N

A A
A





 v , mass average velocity, m/s 

CMv  velocity of the center of mass, m/s 

w n  speed of displacement of the  interface, 

m/s 
V volume, m3 

V m(t) volume of a body, m3 

V a(t) volume of an arbitrary, moving control 
volume, m3 

V A(t) volume of a species A body, m3 

V volume, m3 

xA cA / c, mole fraction of species A 
xA cA / c, mole fraction of species A in the -

phase 
xA cA / c, mole fraction of species A in the -

phase 
Greek letters 

 

 
x y z

  
 

  
i j k , gradient operator, m 

s P , surface gradient operator, m

A activity coefficient (A  1 as xA  1) 
A mass density of species A, kg/m3 

 total mass density, kg/m3 

 viscous stress tensor, N/m2 

A viscous stress tensor for species A, N/m2 

 viscosity, N/m2s 
A chemical potential for species A, J/mol 
A A / , mass fraction of species A 
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Appendix A. Influence of Surface Forces 
 
In our analysis of body forces and central forces in 
Sec. 1.3, we neglected the influence of surface forces 
in order to keep the analysis as simple as possible. In 
this appendix we include the effect of surface forces 
in order to demonstrate that they have no influence 
on our conclusions concerning central forces. We 

begin the analysis with Cuts I and II shown in Fig. 4 
and apply Euler’s first law to obtain 

I I

I I

1 1 1 12

( ) ( )

1 13 ( )1

( ) ( )

Cut I :
t t

t t

d
dV dV

dt

dV dA

  

  

 

  n

v b

b t

V V

V A

 (A1)   

II II

II II

2 2 2 21

( ) ( )

2 23 ( )2

( ) ( )

Cut II :
t t

t t

d
dV dV

dt

dV dA

  

  

 

  n

v b

b t

V V

V A

 (A2) 

At this point we introduce the new form of Cut III 
illustrated in Fig. 1A. In this case the cylinder joining 
the two spherical portions of the cut is arbitrarily 
small and makes no contribution to either the volume 
or area integrals. Under these circumstances the 
application of Euler’s first law to Cut III leads to 

 I II I

II I II

1 1 2 2 1 13

( ) ( ) ( )

2 23 ( )1 ( )2

( ) ( ) ( )

t t t

t t t

d
dV dV dV

dt

dV dA dA

 
     
  

   

  

  n n

v v b

b t t

V V V

V A A

(A3) 

Use of Eqs. (A1) and (A2) in this result immediately 
leads to 
 

I II

1 12 2 21

( ) ( )

0
t t

dV dV    b b
V V

 (A4) 

This is Eq. (39) which provides Newton’s third law 
given earlier by Eq. (42). Here we see that the 
inclusion of surface forces does not alter our 
conclusion about the “equal and opposite” nature of 
the body forces associated with the system shown in 
Fig. 1A. 

Application of Euler’s second law, including 
surface forces, to Cuts I and II shown in Fig. 4 leads 
to 

I I

I I

1 1 1 1 1 12

( ) ( )

1 1 13 1 ( )1

( ) ( )

Cut I :
t t

t t

d
dV dV

dt

dV dA

  

   

 

  n

r v r b

r b r t

V V

V A

 (A5) 

II II

II I

2 2 2 2 2 21

( ) ( )

2 2 23 2 ( )2

( ) ( )

Cut II :
t t

t t

d
dV dV

dt

dV dA

  

   

 

  n

r v r b

r b r t

V V

V A

 (A6) 

We can now apply Euler’s second law to Cut III 
shown in Fig. 1A to obtain 

I II

I II

I I

1 1 1 2 2 2

( ) ( )

1 1 13 2 2 23

( ) ( )

1 ( )1 2 ( )2

( ) ( )

Cut III :
t t

t t

t t

d
dV dV

dt

dV dV

dA dA

 
   
  

   

   

 

 

 n n

r v r v

r b r b

r t r t

V V

V V

A A

 (A7) 
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Fig. 1A. Three body process 
 
Here we have again made use of the fact that the 
portion of the control volume connecting the two 
spheres makes a negligible contribution to either the 
area integrals or the volume integrals in Euler’s 
second law. Use of Eqs. (A5) and (A6) in Eq. (A7) 
leads to the result given earlier by Eq. (47) that we 
repeat here as 

I II

1 1 12 2 2 21

( ) ( )

0
t t

dV dV    r b r b
V V

 (A8) 

At this point we can follow the original analysis to 
obtain Eq. (50) and apply the development in 
Appendix B to obtain the restriction given by Eq. (51). 
Application of this restriction yields Eq. (52) which in 
turn provides the central force law given by Eq. (56). 
 
Appendix B. Central Force Law 
 
Deciding when some quantity is “small enough” so 
that it can be discarded is not an easy task. In this 
appendix we consider the analysis that led from Eq. 
(50) to Eq. (51) and then to the central force law 
represented by Eq. (56). We begin with Eq. (50) 

I II

1 2 12

1 1 12 2 2 21

( ) ( )

CM CM( ) ( )

0
t t

dV dV

   
 
     
  
 

r r f

r b r b 
V V

 (B1) 

and make use of the following nomenclature 

 1 2CM CM( ) ( )   r r R  (B2a) 

 12 f F  (B2b) 

I II

1 1 12 2 2 21

( ) ( )t t

dV dV    r b r b D 
V V

 (B2c) 

to express Eq. (B1) as 
 0  R F D  (B3) 

Here we would like to know when the vector D can 
be discarded in order to simplify this result. A 
plausible intuitive hypothesis (Birkhoff, 1960) 
associated with this simplification is given by 
Assumption: 0 R F  (B4) 
however, we cannot discard D as being small 
compared to R x F since Eq. (B3) requires that D 
and R x F are the same order of magnitude. This 

type of problem has been considered before 
(Whitaker, 1988), and we will follow the procedure 
suggested in that earlier work. This requires that we 
decompose F into a part that is parallel to R and a 
part that is perpendicular to R 
  

parallel part perpendicular part

 F F F  (B5) 

On the basis of this decomposition, we see that Eq. 
(B3) provides the two results given by 
 0 R F  (B6a) 

 0  R F D  (B6b) 

This allows us to estimate F as 

 
( )

( ) 
O D

F
O R

 (B7) 

in which O indicates an order of magnitude estimate. 
If F is small relative to F=, and if small causes give 
rise to small effects, we can replace F= with F and 
Eq. (B6a) leads to the central force law given as Eq. 
(56). In order to develop the conditions that must be 
satisfied in order that F be negligible compared to 
F=, we impose the inequality given by 
Restriction:  F F  (B8) 

In terms of the estimate given by Eq. B7 this leads to 

 
( )

( )
O D

F
O R

  (B9) 

and because of the constraint given by Eq. B8 we can 
express this result as 

 
( )

( )

O D
F

O R
  (B10) 

Making use of the definitions given by Eqs. (B2) we 
have 

 
I II

1 1 12 2 2 21

( ) ( )

12

1 2CM CM

( )
( ) ( )

t t

dV dV
 
   
  

  

 O r b r b

O f
O r r

 


V V

 

 
 (B11) 

On the basis of Eqs. (40) we obtain the estimates 

 
I

1 1 12 1 12

( )

,
t

dV  r b O r f 
V
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  
II

2 2 21 2 21

( )t

dV  r b O r f 
V

 (B12) 

in which f12 = f21. Use of these two estimates, along 
with Eq. (42), in Eq. (B11) leads to the constraint 
given by 

Constraint: 1 2

1 2CM CM

( ) ( )
1

( ) ( )


  

O r O r

O r r

 
  (B13) 

This would appear to be a general constraint 
associated with “mass point mechanics”. 
 
Appendix C. Cauchy’s Lemma 
 
In this development, we begin with Eq. (27) and 
apply it to the body illustrated in Fig. 1C. This leads 
to 

1 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m m

n n strip

t t

A t A t A t

d
dV dV

dt

dA dA dA
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  

 

  n n

v b

t t t

V V



 (C1) 

in which An(t) represents the area of the two parallel 
surfaces and Astrip(t) represents the area of the 
connecting strip having a unit normal . In terms of 
average quantities, this form of Euler’s first law 
reduces to 

   
1

2

( )

( )

( ) ( )

( )

( ) ( )
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n
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n n
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dA A t
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v b t
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Here the volume averages are represented explicitly 
by 
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while the area average of the connecting strip has 
been expressed as 
 ( ) ( )

( )

( )
strip

strip

A t

dA A t   t t   (C4) 

For the limiting case in which the thickness of the 
slab tends to zero, we have 
 ( ) 0, ( ) 0, 0n stripLA t A t as L      (C5) 

and Eq. (C2) reduces to 
 

1 2( ) ( )

( )

0 , Δ 0
nA t

dA L     n nt t  (C6) 

Since the limits of integration are arbitrary, the only 
non-trivial solution to this result is given by 
 

1 2( ) ( ) n nt t  (C7) 

Traditionally, one uses n1 = n and n1 =  n so that 
this result takes the form given by 
Cauchy’s lemma4 ( ) ( ) n nt t  (C8) 

                                                 
4 James, G. and James, R.C. 1959, Mathematics Dictionary 
(multilingual edition), “lemma, a theorem proved for the use in the 
proof of another theorem”, D. van Nostrand Co., Inc., New York. 

 
 

Fig. 1C. Body having the form of a slab 
 
One can easily become confused when discussing the 
sign of a particular component of the stress vector 
acting on a particular surface, and the careful use of 
Eq. (C8) will help to avoid this confusion. 
 
Appendix D. Cauchy’s Fundamental Theorem 
 
In Appendix C we learned something very important 
about the stress vector by applying Euler’s first law 
to the slab illustrated in Fig. 1C, and we can learn 
more with an application to the tetrahedron shown in 
Fig. 1D. One should think of the tetrahedron as a 
body cut out of a distinct body according to the Euler 
cut principle. 

The stresses shown in Fig. 1D are identified 
in a consistent manner, i.e., t(n) represents the vector 
force per unit area acting on a surface having an unit 
normal n. The unit normal vectors for the three 
coordinate surfaces shown in Fig. 1D are i, j, and 
k respectively, thus the stress vectors acting on the 
coordinate surfaces are identified as t(i), t(j), and 
t(k) while the stress vector acting on the oblique 
surface is identified as t(n). The areas, normal vectors, 
and stress vectors associated with the tetrahedron 
shown in Fig. 1D are listed in Table D-1. The 
oblique area is designated by A, and the areas of the 
coordinate surfaces are identified in terms of the 
coordinate that is constant over the surface. Thus the 
coordinate surface coincident with the y-z plane is 
identified as Ax and we will refer to this surface as 
the x-surface. While this nomenclature is convenient 
for the identification of the coordinate surfaces of the 
tetrahedron shown in Fig. 1D, one must be careful to 
remember that Ax does not represent the component 
of a vector. 

We can apply Eq. (27) to the tetrahedron and 
express the result as 

( )

Δ Δ Δ

( ) ( ) ( )

Δ Δ Δx y z

V V A

A A A

d
dV dV dA

dt

dA dA dA  
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  

  
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n

i j k

v b t

t t t
 (D1) 
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Fig.1D. Stresses acting on a tetrahedron. 
 

Table D-1. Stresses acting on a tetrahedron 
Plane Area Normal Stress vector 
ABC A n t(n) 
BCD Ax  i t(i) 
ADC Ay  j t(j) 
ABD Az  k t(k) 

  
Here we have used V to represent the volume of the 
tetrahedron while the four areas are represented by 
A, Ax, Ay and Az. In terms of average quantities, 
Euler’s first law takes the form 
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in which volume averages are expressed as 

  , etc.
V

d d
dV V

dt dt

     v v  (D3) 

while the area averages are represented by 
( ) ( ) ( ) ( ), , etc.

x

x

A A

dA A dA A 
 

      n n i it t t t  (D4) 

It is our intention to examine Eq. (D2) in the limit as 
V  0, but before taking that limit, we need to use 
the projected area theorem in order to express the 
areas of the coordinate surfaces according to 
 ( )xA A   n i  (D5a) 

 ( )yA A   n j  (D5b) 

 ( )zA A   n k  (D5c) 

The projected area theorem is discussed by Stein and 
Barcellos (1992, Secs. 12.2 and 17.1). Equations 
(D5) can be used in Eq. (D2) to obtain a form 
containing only the oblique area, A given by 
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We can eliminate the first two terms in this form of 
Euler’s first law by recognizing that the volume, V, 
tends to zero faster than the area, A. To do this, we 
divide Eq. (D6) by A and take the limit to obtain  

 
 

 
0 0

( ) ( ) ( ) ( )
0

1
lim lim

lim ( ) ( ) ( )

V V

V

d V
V

A dt A   

   

            
    
             n i j k
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(D7) 

Given the limiting condition for the ratio of the 
volume to the area, 

 
0

lim 0
V

V

A 

    
 (D8) 

we see that the first two terms in Eq. (D7) tend to 
zero and we are left with a result involving only the 
four stress vectors acting on the tetrahedron 
illustrated in Fig. 1D. 

( ) ( ) ( ) ( )0 ( ) ( ) ( )        n i j kt n i t n j t n k t  (D9) 

On the basis of Cauchy’s lemma, we have the 
following three relations 

( ) ( ) ( ) ( ) ( ) ( ), ,       i i j j k kt t t t t t  (D10) 

which allow us to express Eq. (D9) in the form 
Cauchy’s fundamental theorem: 

( ) ( ) ( ) ( )( ) ( ) ( )     n i j kt n i t n j t n k t  (D11) 

This famous theorem specifies the functional 
dependence of the stress vector on the unit normal 
vector, n, and we need to use this result in Eqs. (27) 
and (28) in order to derive the governing point 
equations associated with Euler’s two laws of 
mechanics. We begin with Eq. (D11) and rearrange 
that expression to obtain 

     ( ) ( ) ( ) ( )     n i j kt n i t n j t n k t  (D12) 

This encourages us to remove the unit normal vector 
as a common factor in order to express the stress 
vector as 

     ( ) ( ) ( ) ( )
     n i j kt n i t j t k t  (D13) 

We now define the term in brackets is the stress 
tensor, T, leading to the compact representation 
given by 
 ( )  nt n T  (D14) 

Here one can think of the stress tensor as operating 
on the vector n to produce the vector t(n), or one can 
think of the stress tensor as mapping the vector n 
onto the vector t(n). 
 
Appendix E. Use of the chemical potential 
 
In the development of the Stefan-Maxwell equations 
we made use of the ideal mixture relation given by 
 ,A Ap x p ideal mixture  (E1) 

and in this appendix we remove this limitation. We 
begin with the idea that the state of a system can be 
characterized by N mole fractions along with the 
temperature and pressure. To be explicit about this 
assumption we write 
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1

state of an -component

            system

( , , ,...., , , )A B C N

N

x x x x T p

 
 
 

H

 (E2) 

This representation does not apply to an elastic 
material for which the strain would also be required 
to specify the state, nor would it apply to a magnetic 
material for which the magnetic field would be 
required to specify the state. To be clear about 
dynamic systems, we note that the use of Eq. (E2) 
requires the assumption of local thermodynamic 
equilibrium. To give a specific example of this idea, 
it means that the functional dependence of the 
chemical potential of species A is taken to be 
(Prigogine and Defay, 1954, page 85) 
 1( , , ,...., , , )A A A B C Nx x x x T p    (E3) 

even in the presence of gradients such as xA, T, 
and p, or in the presence of time derivatives such as 
∂p / ∂t, etc. This is a common assumption made in 
studies of transport phenomena, but it is rarely stated 
in a clear manner. 

In this appendix we will avoid the limitation 
imposed by Eq. E1 and make use of the more general 
relation given by 

1( , , ,...., , , ) ,A A B C Np f x x x x T p

local thermodynamic equilibrium


(E4) 

In order to connect this development with that given 
in Sec. 2.6, it will be convenient to express the 
functional dependence of the partial pressure 
according to 

1( , , ,...., , , )A A A B C Np x p x x x x T p F  (E5) 

Furthermore, it will be convenient to express this in 
the general notation given by 

1 1( , , ,...., , , )A A A B C N N Np x p         F  (E6) 

Use of this more general representation for the 
partial pressure in Eq. (131) leads to 
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and we can follow the development from Eq. (133) 
to Eq. (136) to obtain 
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At this point we represent the chemical potential as 
(Denbigh, 1955, page 269) as 

o ln ( ) , 1 as 1A A A A A ART x x         (E9) 

and form the gradient of the chemical potential to 
obtain 
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Substitution of this relation into Eq. (E9) leads to 
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At this point we can follow Eqs. (150) through (152) 
to simplify this result to the form 
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In some cases, all of the terms on the left hand side 
are discarded to obtain what is referred to as the 
generalized Stefan-Maxwell equations (Taylor and 
Krishna, 1993) given by 

 1
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RT
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Arguments are given in Sec. 2.7 suggesting that the 
first four terms on the left hand side of Eq. (E12) can 
often be discarded. The fifth term involves a series of 
corrections to the partial pressure for species A. The 
most important term in this series of terms would be 
the first one (for species A) that is given by 

 A Ax x  F ; however, there may be many 

situations in which this entire series of terms is 
negligible. It is plausible that the sixth and seventh 
terms are also negligible compared to either one of 
the two terms on the right hand side of Eq. (E12); 
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however, the eighth term is problematic. For ideal 
solutions, the Stefan-Maxwell equations represented 
by Eq. (146) should suffice. For non-ideal solutions, 
it is difficult to argue that 

  ln A
A A A

x
x

RT
    (E14) 

thus a more appropriate form of the generalized 
Stefan-Maxwell equations is given by 
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There are numerous variations of the basic Stefan-
Maxwell equations to be found in the literature (Bird 
et al., 2002, page 769; Slattery, 1999, Sec. 8.4.4; 
Deen, 1998, Sec. 11.8); however, there would 
appear to be no detailed studies of the magnitude of 
the terms that are discarded or retained. On the basis 
of the material presented in Sec. 2.7 and the author’s 
intuition, it would appear that Eq. (E15) should be 
the first choice if one wants to move beyond Eq. 
(146). 

 




